如圖,直線l1∥l2且l1,l2被直線l3所截,∠1=∠2=35°,∠P=90°,則∠3=    度.
【答案】分析:先根據兩直線平行,同旁內角互補,求出∠3與∠4的和,再根據直角三角形兩銳角互余求出∠4,∠3即可求得.
解答:解:如圖,∵l1∥l2,
∴∠1+∠2+∠3+∠4=180°,
∵∠1=∠2=35°,
∴∠3+∠4=110°,
∵∠P=90°,∠2=35°,
∴∠4=90°-35°=55°,
∴∠3=110°-55°=55°.
點評:本題主要利用平行線的性質和直角三角形兩銳角互余的性質求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、如圖,直線L1∥L2,AB⊥CD,∠1=34°,那么∠2的度數(shù)是
56
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,直線l1∥l2,⊙O與l1和l2分別相切于點A和點B.點M和點N分別是l1和l2上的動點,MN沿l1和l2平移.⊙O的半徑為1,∠1=60°.下列結論錯誤的是( 。
A、MN=
4
3
3
B、若MN與⊙O相切,則AM=
3
C、若∠MON=90°,則MN與⊙O相切
D、l1和l2的距離為2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,直線l1∥l2,AF:FB=2:3,BC:CD=2:1,則AE:EC是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,直線l1∥l2,∠1=55°,∠2=65°,則∠3=
60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•無錫二模)如圖,直線L1∥L2,AB⊥CD,∠1=34°,那么∠2的度數(shù)是
56
56
度.

查看答案和解析>>

同步練習冊答案