如圖,點A,B在直線MN上,AB=11厘米,⊙A,⊙B的半徑均為1厘米.⊙A以每秒2厘米的速度自左向右運動,與此同時,⊙B的半徑也不斷增大,其半徑r(厘米)與時間t(秒)之間的關(guān)系式為r=1+t(t≥0).
(1)試寫出點A,B之間的距離d(厘米)與時間t(秒)之間的函數(shù)表達(dá)式;
(2)問點A出發(fā)后多少秒兩圓相切?

【答案】分析:(1)因為⊙A以每秒2厘米的速度自左向右運動,所以此題要分兩種情況討論:
當(dāng)點A在點B的左側(cè)時,圓心距等于11減去點A所走的路程;
當(dāng)點A在點B的右側(cè)時,圓心距等于點A走的路程減去11;
(2)根據(jù)兩圓相切時,兩圓的半徑與圓心距的關(guān)系,注意有4種情況.
解答:解:(1)當(dāng)0≤t≤5.5時點A在點B的左側(cè),此時函數(shù)表達(dá)式為d=11-2t,
當(dāng)t>5.5時點A在點B的右側(cè),圓心距等于點A走的路程減去11,此時函數(shù)表達(dá)式為d=2t-11;

(2)分四種情況考慮:兩圓相切可分為如下四種情況:
①當(dāng)兩圓第一次外切,由題意,
可得11-2t=1+1+t,t=3;
②當(dāng)兩圓第一次內(nèi)切,由題意,
可得11-2t=1+t-1,t=
③當(dāng)兩圓第二次內(nèi)切,由題意,可得2t-11=1+t-1,t=11;
④當(dāng)兩圓第二次外切,由題意,可得2t-11=1+t+1,t=13.
所以,點A出發(fā)后3秒、秒、11秒、13秒時兩圓相切.
點評:此題一定要結(jié)合圖形分析各種不同的情況.注意在解答第二問的時候,⊙B的半徑也在不斷變化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,點B、D 在直線MN上.已知∠1=∠2,請你再添上一個條件,使AB∥CD成立.并說明理由.
(1)你所添的一個條件是:
EB∥FD或EB⊥MN或FD⊥MN(答案不唯一)
;
(2)說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南湖區(qū)二模)如圖.點A、B在直線MN上,AB=8cm,⊙A、⊙B的半徑均為1cm,⊙A以2cm/s的速度沿AB方向運動,與此同時,⊙B的半徑也在不斷增大,其半徑r(cm)與時間t(s)的函數(shù)關(guān)系式為r=1+t(t≥0),則點A出發(fā)后
3秒、
11
3
秒、11秒、13
3秒、
11
3
秒、11秒、13
秒時兩圓相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A、B在直線MN上,AB=11cm,⊙A、⊙B的半徑均為1cm,⊙A以每秒2cm的速度自左向右運動,與此同時,⊙B的半徑也不斷增大,其半徑r(cm)與時間t(s)之間的關(guān)系式為r=1+t(t≥0),當(dāng)點A出發(fā)后
3秒、
11
3
秒、11秒、13
3秒、
11
3
秒、11秒、13
s兩圓相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點B,C分別在直線y=2x和直線y=kx上,A,D是x軸上兩點,若四邊形ABCD是長方形,且AB:AD=1:2,則k的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A、B分別在直線CM、DN上,CM∥DN.
(1)如圖1,連接AB,則∠CAB+∠ABD=
180°
180°
;
(2)如圖2,點P1是直線CM、DN內(nèi)部的一個點,連接AP1、BP1.求證:∠CAP1+∠AP1B+∠P1BD=360°;
(3)如圖3,點P1、P2是直線CM、DN內(nèi)部的一個點,連接AP1、P1P2、P2B.試求∠CAP1+∠AP1P2+∠P1P2B+∠P2BD的度數(shù);
(4)若按以上規(guī)律,猜想并直接寫出∠CAP1+∠AP1P2+…∠P5BD的度數(shù)(不必寫出過程).

查看答案和解析>>

同步練習(xí)冊答案