如圖所示,拋物線y=ax2+bx+c經(jīng)過原點O,與x軸交于另一點N,直線y=kx+4與兩坐標(biāo)軸分別交于A、D兩點,與拋物線交于B(1,m)、C(2,2)兩點.
(1)求直線與拋物線的解析式;
(2)若拋物線在x軸上方的部分有一動點P(x,y),設(shè)∠PON=α,求當(dāng)△PON的面積最大時tanα的值;
(3)若動點P保持(2)中的運動路線,問是否存在點P,使得△POA的面積等于△PON面積的
8
15
?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
(1)將點C(2,2)代入直線y=kx+4,可得k=-1
所以直線的解析式為y=-x+4
當(dāng)x=1時,y=3,
所以B點的坐標(biāo)為(1,3)
將B、C、O三點的坐標(biāo)分別代入拋物線y=ax2+bx+c,
可得
a+b+c=3
4a+2b+c=2
c=0

解得
a=-2
b=5
c=0
,
所以所求的拋物線為y=-2x2+5x.

(2)因為ON的長是一定值,
所以當(dāng)點P為拋物線的頂點時,△PON的面積最大,
又該拋物線的頂點坐標(biāo)為(
5
4
,
25
8
),此時tan∠PON=
y
x
=
25
8
5
4
=
5
2


(3)存在;
把x=0代入直線y=-x+4得y=4,所以點A(0,4)
把y=0代入拋物線y=-2x2+5x
得x=0或x=
5
2
,所以點N(
5
2
,0)
設(shè)動點P坐標(biāo)為(x,y),
其中y=-2x2+5x (0<x<
5
2

則得:S△OAP=
1
2
|OA|•x=2x
S△ONP=
1
2
|ON|•y=
1
2
×
5
2
•(-2x2+5x)=
5
4
(-2x2+5x)
由S△OAP=
8
15
S△ONP,
即2x=
8
15
5
4
(-2x2+5x)
解得x=0或x=1,舍去x=0
得x=1,由此得y=3
所以得點P存在,其坐標(biāo)為(1,3).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=(1-m)x2+4x-3開口向下,與x軸交于A(x1,0)和B(x2,0)兩點,其中x1<x2
(1)求m的取值范圍;
(2)若x12+x22=10,求拋物線的解析式,并在給出的直角坐標(biāo)系中畫出這條拋物線;
(3)設(shè)這條拋物線的頂點為C,延長CA交y軸于點D.在y軸上是否存在點P,使以P、B、O為頂點的三角形與△BCD相似?若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系中有點A(-1,0),點B(4,0),以AB為直徑的半圓交y軸正半軸于點C.
(1)求點C的坐標(biāo);
(2)求過A,B,C三點的拋物線的解析式;
(3)在(2)的條件下,若在拋物線上有一點D,使四邊形BOCD為直角梯形,求直線BD的解析式;
(4)設(shè)點M是拋物線上任意一點,過點M作MN⊥y軸,交y軸于點N.若在線段AB上有且只有一點P,使∠MPN為直角,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,將一塊腰長為
5
的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點C的坐標(biāo)為(-1,0),點B在拋物線y=ax2+ax-2上.
(1)求點A、點B的坐標(biāo);
(2)求拋物線的解析式;
(3)設(shè)(2)中拋物線的頂點為D,求△DBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,且點A(0,2),點C(-1,0),如圖所示:拋物線y=ax2+ax-2經(jīng)過點B.
(1)求點B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,在平面直角坐標(biāo)系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過點C.
(1)求拋物線的解析式;
(2)在拋物線(對稱軸的右側(cè))上是否存在兩點P、Q,使四邊形ABPQ是正方形?若存在,求點P、Q的坐標(biāo),若不存在,請說明理由;
(3)如圖②,E為BC延長線上一動點,過A、B、E三點作⊙O′,連接AE,在⊙O′上另有一點F,且AF=AE,AF交BC于點G,連接BF.下列結(jié)論:①BE+BF的值不變;②
BF
AF
=
BG
AG
,其中有且只有一個成立,請你判斷哪一個結(jié)論成立,并證明成立的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1所示,一張三角形紙片ABC,∠ACB=90°,AC=8,BC=6.沿斜邊AB的中線CD把這張紙片剪成△AC1D1和△BC2D2兩個三角形(如圖所示).將紙片△AC1D1沿直線D2B(AB)方向平移(點A,D1,D2,B始終在同一直線上),當(dāng)點D1于點B重合時,停止平移.在平移過程中,C1D1與BC2交于點E,AC1與C2D2、BC2分別交于點F、P.
(1)當(dāng)△AC1D1平移到如圖3所示的位置時,猜想圖中的D1E與D2F的數(shù)量關(guān)系,并證明你的猜想;
(2)設(shè)平移距離D2D1為x,△AC1D1與△BC2D2重疊部分面積為y,請寫出y與x的函數(shù)關(guān)系式,以及自變量的取值范圍;
(3)對于(2)中的結(jié)論是否存在這樣的x的值使得y=
1
4
S△ABC;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用長6米的鋁合金條制成如圖所示的矩形窗框,則這個窗戶的最大透光面積為______米2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某玩具廠計劃生產(chǎn)一種玩具熊貓,每日最高產(chǎn)量為40只,且每日產(chǎn)出的產(chǎn)品全部售出.已知生產(chǎn)x只玩具熊貓的成本為R(元),售價每只為P(元),且R、P與x的關(guān)系式分別為R=500+30x,P=170-2x.
(1)當(dāng)日產(chǎn)量為多少時,每日獲得的利潤為1750元?
(2)當(dāng)日產(chǎn)量為多少時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案