(2003•資陽(yáng))如圖,已知直角坐標(biāo)系中的點(diǎn)A、B的坐標(biāo)分別為A(2,4)、B(4,0),且P為AB的中點(diǎn).若將線段AB向右平移3個(gè)單位后,與點(diǎn)P對(duì)應(yīng)的點(diǎn)為Q,則點(diǎn)Q的坐標(biāo)是( )

A.(3,2)
B.(6,2)
C.(6,4)
D.(3,5)
【答案】分析:直接利用平移中點(diǎn)的變化規(guī)律求解即可.平移中點(diǎn)的變化規(guī)律是:橫坐標(biāo)右移加,左移減;縱坐標(biāo)上移加,下移減.
解答:解:根據(jù)中點(diǎn)坐標(biāo)的求法可知點(diǎn)PD坐標(biāo)為(3,2),因?yàn)樽笥移揭泣c(diǎn)的縱坐標(biāo)不變,由題意向右平移3個(gè)單位,則各點(diǎn)的橫坐標(biāo)加3,所以點(diǎn)Q的坐標(biāo)是(6,2).故選B.
點(diǎn)評(píng):本題考查圖形的平移變換,關(guān)鍵是要懂得左右平移點(diǎn)的縱坐標(biāo)不變,而上下平移時(shí)點(diǎn)的橫坐標(biāo)不變,平移變換是中考的常考點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2003•資陽(yáng))如圖,已知拋物線C的解析式為y=x2-(a+b)x+,其中a、b、c分別是△ABC中∠A、∠B、∠C所對(duì)邊的長(zhǎng).
(1)求證:拋物線C與x軸必有兩個(gè)交點(diǎn);
(2)設(shè)P、Q是拋物線C與x軸的兩個(gè)交點(diǎn),求證:P、Q兩點(diǎn)總在x軸的正半軸上;
(3)設(shè)直線l:y=ax-bc與拋物線交于點(diǎn)E、F,與y軸交于點(diǎn)M,N為拋物線與y軸的交點(diǎn),直線x=a是拋物線的對(duì)稱軸,當(dāng)△MNE的面積是△MNF的面積的5倍時(shí),確定△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年四川省資陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•資陽(yáng))如圖,已知拋物線C的解析式為y=x2-(a+b)x+,其中a、b、c分別是△ABC中∠A、∠B、∠C所對(duì)邊的長(zhǎng).
(1)求證:拋物線C與x軸必有兩個(gè)交點(diǎn);
(2)設(shè)P、Q是拋物線C與x軸的兩個(gè)交點(diǎn),求證:P、Q兩點(diǎn)總在x軸的正半軸上;
(3)設(shè)直線l:y=ax-bc與拋物線交于點(diǎn)E、F,與y軸交于點(diǎn)M,N為拋物線與y軸的交點(diǎn),直線x=a是拋物線的對(duì)稱軸,當(dāng)△MNE的面積是△MNF的面積的5倍時(shí),確定△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:填空題

(2003•資陽(yáng))如圖,△ABC的中位線EF交中線AD于G,則△AGE與△ABC的面積之比為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:填空題

(2003•資陽(yáng))如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長(zhǎng)線于F,若AB=10,CD=8,則切線BF的長(zhǎng)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年四川省資陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•資陽(yáng))如圖,在△ABC中,已知∠ACB=90°,CD⊥AB于D,AC=,BD=3.
(1)請(qǐng)根據(jù)下面求cosA的解答過(guò)程,在橫線上填上適當(dāng)?shù)慕Y(jié)論,使解答正確完整,
∵CD⊥AB,∠ACB=90°∴AC=______cosA,______=AC•cosA
由已知AC=6,BD=3,∴=AB cosA=(AD+BD)cosA=(cosA+3)cosA,設(shè)t=cosA,則t>0,且上式可化為t2+______

查看答案和解析>>

同步練習(xí)冊(cè)答案