【題目】有一張等腰三角形紙片,AB=AC=5,BC=3,小明將它沿虛線(xiàn)PQ剪開(kāi),得到△AQP和四邊形BCPQ兩張紙片(如圖所示),且滿(mǎn)足∠BQP=∠B,則下列五個(gè)數(shù)據(jù) ,3, ,2, 中可以作為線(xiàn)段AQ長(zhǎng)的有個(gè).

【答案】3
【解析】解:作CD∥PQ,交AB于D,如圖所示: 則∠CDB=∠BQP,
∵AB=AC=5,
∴∠B=∠ACB,
∵∠BQP=∠B,
∴∠B=∠ACB=∠CDB,
∴CD=BC=3,△BCD∽△BAC,
,即
解得:BD= ,
∴AD=AB﹣BD=
∵CD∥PQ,
∴△APQ∽△ACD,
,即
解得:AP= AQ,
當(dāng)AQ= 時(shí),AP= × = >5,不合題意,舍去;
當(dāng)AQ=3時(shí),AP= ×3= <5,符合題意;
當(dāng)AQ= 時(shí),點(diǎn)P與C重合,不合題意,舍去;
當(dāng)AQ=2時(shí),AP= ×2= <5,符合題意;
當(dāng)AQ= 時(shí),AP= × = <5,符合題意;
綜上所述:可以作為線(xiàn)段AQ長(zhǎng)的有3個(gè);
所以答案是:3.

【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角);相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的布袋中裝有相同的三個(gè)小球,其上面分別標(biāo)注數(shù)字1、2、3、,現(xiàn)從中任意摸出一個(gè)小球,將其上面的數(shù)字作為點(diǎn)M的橫坐標(biāo);將球放回袋中攪勻,再?gòu)闹腥我饷鲆粋(gè)小球,將其上面的數(shù)字作為點(diǎn)M的縱坐標(biāo).
(1)寫(xiě)出點(diǎn)M坐標(biāo)的所有可能的結(jié)果;
(2)求點(diǎn)M在直線(xiàn)y=x上的概率;
(3)求點(diǎn)M的橫坐標(biāo)與縱坐標(biāo)之和是偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,O為正方形ABCD的中心,分別延長(zhǎng)OA、OD到點(diǎn)F、E,使OF=2OA,OE=2OD,連接EF.將△EOF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角得到△E1OF1(如圖2).
(1)探究AE1與BF1的數(shù)量關(guān)系,并給予證明;
(2)當(dāng)α=30°時(shí),求證:△AOE1為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=AC,BAC=54°,點(diǎn)DAB中點(diǎn),且ODAB,BAC的平分線(xiàn)與AB的垂直平分線(xiàn)交于點(diǎn)O,將∠C沿EFEBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC______ °

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在

(1)比較∠BAD和∠DAC的大小。
(2)求sin∠BAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校田園科技社團(tuán)計(jì)劃購(gòu)進(jìn)A、B兩種花卉,兩次購(gòu)買(mǎi)每種花卉的數(shù)量以及每次的總費(fèi)用如下表所示:

花卉數(shù)量(單位:株)

總費(fèi)用(單位:元)

A

B

第一次購(gòu)買(mǎi)

10

25

225

第二次購(gòu)買(mǎi)

20

15

275


(1)你從表格中獲取了什么信息?(請(qǐng)用自己的語(yǔ)言描述,寫(xiě)出一條即可);
(2)A、B兩種花卉每株的價(jià)格各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,tanB= ,BC=6,過(guò)點(diǎn)A作BC邊上的高,垂足為點(diǎn)D,且滿(mǎn)足BD:CD=2:1,則△ABC面積的所有可能值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點(diǎn)C從A點(diǎn)出發(fā),在邊AO上以2cm/s的速度向O點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)D從點(diǎn)B出發(fā),在邊BO上以1.5cm/s的速度向O點(diǎn)運(yùn)動(dòng),過(guò)OC的中點(diǎn)E作CD的垂線(xiàn)EF,則當(dāng)點(diǎn)C運(yùn)動(dòng)了s時(shí),以C點(diǎn)為圓心,1.5cm為半徑的圓與直線(xiàn)EF相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

(1)閱讀材料:
教材中的問(wèn)題,如圖1,把5個(gè)邊長(zhǎng)為1的小正方形組成的十字形紙板剪開(kāi),使剪成的若干塊能夠拼成一個(gè)大正方形,小明的思考:因?yàn)榧羝辞昂蟮膱D形面積相等,且5個(gè)小正方形的總面積為5,所以拼成的大正方形邊長(zhǎng)為 , 故沿虛線(xiàn)AB剪開(kāi)可拼成大正方形的一邊,請(qǐng)?jiān)趫D1中用虛線(xiàn)補(bǔ)全剪拼示意圖
(2)類(lèi)比解決:
如圖2,已知邊長(zhǎng)為2的正三角形紙板ABC,沿中位線(xiàn)DE剪掉△ADE,請(qǐng)把紙板剩下的部分DBCE剪開(kāi),使剪成的若干塊能夠拼成一個(gè)新的正三角形.
拼成的正三角形邊長(zhǎng)為;
(3)在圖2中用虛線(xiàn)畫(huà)出一種剪拼示意圖.
(4)靈活運(yùn)用:
如圖3,把一邊長(zhǎng)為60cm的正方形彩紙剪開(kāi),用剪成的若干塊拼成一個(gè)軸對(duì)稱(chēng)的風(fēng)箏,其中∠BCD=90°,延長(zhǎng)DC、BC分別與AB、AD交于點(diǎn)E、F,點(diǎn)E、F分別為AB、AD的中點(diǎn),在線(xiàn)段AC和EF處用輕質(zhì)鋼絲做成十字形風(fēng)箏龍骨,在圖3的正方形中畫(huà)出一種剪拼示意圖,并求出相應(yīng)輕質(zhì)鋼絲的總長(zhǎng)度.(說(shuō)明:題中的拼接都是不重疊無(wú)縫隙無(wú)剩余)

查看答案和解析>>

同步練習(xí)冊(cè)答案