【題目】在平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(,),點Q的坐標(biāo)為(,),且,,若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點PQ相關(guān)矩形.下圖為點P,Q 相關(guān)矩形的示意圖

1)已知點A的坐標(biāo)為(1,0

若點B的坐標(biāo)為(31)求點A,B相關(guān)矩形的面積;

C在直線x=3上,若點AC相關(guān)矩形為正方形,求直線AC的表達(dá)式;

2O的半徑為,點M的坐標(biāo)為(m3).若在O上存在一點N,使得點M,N相關(guān)矩形為正方形,求m的取值范圍

【答案】(1)2; ;(2)1m5 或者

【解析】

試題分析:(1)①由相關(guān)矩形的定義可知:要求A與B的相關(guān)矩形面積,則AB必為對角線,利用A、B兩點的坐標(biāo)即可求出該矩形的底與高的長度,進而可求出該矩形的面積;

②由定義可知,AC必為正方形的對角線,所以AC與x軸的夾角必為45,設(shè)直線AC的解析式為;y=kx+b,由此可知k=±1,再(1,0)代入y=kx+b,即可求出b的值;

(2)由定義可知,MN必為相關(guān)矩形的對角線,若該相關(guān)矩形的為正方形,即直線MN與x軸的夾角為45°,由因為點N在圓O上,所以該直線MN與圓O一定要有交點,由此可以求出m的范圍.

試題解析:(1)①A(1,0),B(3,1),由定義可知:點A,B的“相關(guān)矩形”的底與高分別為2和1,點A,B的“相關(guān)矩形”的面積為2×1=2;

②由定義可知:AC是點A,C的“相關(guān)矩形”的對角線,又點A,C的“相關(guān)矩形”為正方形,直線AC與x軸的夾角為45°,設(shè)直線AC的解析為:y=x+m或y=﹣x+n把(1,0)分別y=x+m,m=﹣1,直線AC的解析為:y=x﹣1,把(1,0)代入y=﹣x+n,n=1,y=﹣x+1,綜上所述,若點A,C的“相關(guān)矩形”為正方形,直線AC的表達(dá)式為y=x﹣1或y=﹣x+1;

(2)設(shè)直線MN的解析式為y=kx+b,點M,N的“相關(guān)矩形”為正方形,由定義可知:直線MN與x軸的夾角為45°,k=±1,點N在O上,當(dāng)直線MN與O有交點時,點M,N的“相關(guān)矩形”為正方形,當(dāng)k=1時,作O的切線AD和BC,且與直線MN平行,其中A、C為O的切點,直線AD與y軸交于點D,直線BC與y軸交于點B,連接OA,OC,把M(m,3)代入y=x+b,b=3﹣m,直線MN的解析式為:y=x+3﹣m∵∠ADO=45°,OAD=90°,OD=OA=2,D(0,2)

同理可得:B(0,﹣2),令x=0代入y=x+3﹣m,y=3﹣m,﹣2≤3﹣m≤2,1≤m≤5,當(dāng)k=﹣1時,把M(m,3)代入y=﹣x+b,b=3+m,直線MN的解析式為:y=x+3+m,同理可得:﹣2≤3+m≤2,﹣5≤m≤﹣1;

綜上所述,當(dāng)點M,N的“相關(guān)矩形”為正方形時,m的取值范圍是:1≤m≤5或﹣5≤m≤﹣1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,以A為圓心,任意長為半徑畫弧分別交ABAC于點MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( )

ADBAC的平分線;

②∠ADC=60°

DAB的中垂線上;

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用不等式表示“x與5的差不小于4”:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種植物的主干長出若干數(shù)目的支干,每個支干又長出同樣多數(shù)目的小分支,主干、支干、小分支一共是91個,則每個支干長出的小分支數(shù)目為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E為等腰直角ABC的邊AB上的一點,要使AE3,BE1,PAC上的動點,則PBPE的最小值為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,AB的垂直平分線交邊ABD點,交邊ACE點,若ABCEBC的周長分別是40cm,24cm,則AB=________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線(a≠0)經(jīng)過點A(4,﹣5),與x軸的負(fù)半軸交于點B,與y軸交于點C,且OC=5OB,拋物線的頂點為點D

(1)求這條拋物線的表達(dá)式;

(2)聯(lián)結(jié)AB、BC、CD、DA,求四邊形ABCD的面積;

(3)如果點E在y軸的正半軸上,且∠BEO=∠ABC,求點E的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自來水公司按如下標(biāo)準(zhǔn)收取水費:若每戶每月用水不超過10 m3,則每立方米收費1.5元;若每戶每月用水超過10 m3,則超過部分每立方米收費2元.小亮家某月的水費不少于25元,那么他家這個月的用水量x(m3)至少是多少?請列出關(guān)于x的不等式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某校舉辦的足球比賽中,規(guī)定:勝一場得3分,平一場得1分,負(fù)一場得0分.某班足球隊參加了12場比賽,共得22分,已知這個球隊只輸了2場,那么此隊勝幾場,平幾場?

查看答案和解析>>

同步練習(xí)冊答案