(2009•咸寧)問題背景:
在△ABC中,AB、BC、AC三邊的長分別為、,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上______;
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為、(a>0),請利用圖②的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積;
探索創(chuàng)新:
(3)若△ABC三邊的長分別為、、(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.

【答案】分析:(1)△ABC的面積=3×3-1×2÷2-1×3÷2-2×3÷2=3.5;
(2)a是直角邊長為a,2a的直角三角形的斜邊;2a是直角邊長為2a,2a的直角三角形的斜邊;a是直角邊長為a,4a的直角三角形的斜邊,把它整理為一個矩形的面積減去三個直角三角形的面積;
(3)結合(1),(2)易得此三角形的三邊分別是直角邊長為m,4n的直角三角形的斜邊;直角邊長為3m,2n的直角三角形的斜邊;直角邊長為2m,2n的直角三角形的斜邊.同樣把它整理為一個矩形的面積減去三個直角三角形的面積.
解答:解:(1);(2分)

(2)如圖:

S△ABC=2a×4a-a×2a-×2a×2a-=3a2;(6分)

(3)解:構造△ABC所示,(未在試卷上畫出圖形不扣分)

S△ABC=3m×4n--×3m×2n×2m×2n   (9分)
=5mn.   (10分)
點評:本題是開放性的探索問題,關鍵是結合網格用矩形及容易求得面積的直角三角形表示出所求三角形的面積進行解答.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(31)(解析版) 題型:解答題

(2009•咸寧)問題背景:
在△ABC中,AB、BC、AC三邊的長分別為、、,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上______;
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為、、(a>0),請利用圖②的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積;
探索創(chuàng)新:
(3)若△ABC三邊的長分別為、(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷48(新灣初中 洪凱)(解析版) 題型:解答題

(2009•咸寧)問題背景:
在△ABC中,AB、BC、AC三邊的長分別為、,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上______;
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為、、(a>0),請利用圖②的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積;
探索創(chuàng)新:
(3)若△ABC三邊的長分別為、、(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年河北省保定市博野縣中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•咸寧)問題背景:
在△ABC中,AB、BC、AC三邊的長分別為、,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上______;
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為、、(a>0),請利用圖②的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積;
探索創(chuàng)新:
(3)若△ABC三邊的長分別為、(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省佛山市南海區(qū)大瀝鎮(zhèn)中考數(shù)學模擬試卷(解析版) 題型:解答題

(2009•咸寧)問題背景:
在△ABC中,AB、BC、AC三邊的長分別為、、,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上______;
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為、(a>0),請利用圖②的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積;
探索創(chuàng)新:
(3)若△ABC三邊的長分別為、(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.

查看答案和解析>>

同步練習冊答案