(2007•河池)如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.
(1)點(diǎn)______(填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

【答案】分析:(1)(BC÷點(diǎn)N的運(yùn)動(dòng)速度)與(OA÷點(diǎn)M的運(yùn)動(dòng)速度)可知點(diǎn)M能到達(dá)終點(diǎn).
(2)經(jīng)過t秒時(shí)可得NB=y,OM-2t.根據(jù)∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S與t的函數(shù)關(guān)系式后根據(jù)t的值求出S的最大值.
(3)本題分兩種情況討論(若∠AQM=90°,PQ是等腰Rt△MQA底邊MA上的高;若∠QMA=90°,QM與QP重合)求出t值.
解答:解:(1)點(diǎn)M.(1分)

(2)經(jīng)過t秒時(shí),NB=t,OM=2t,
則CN=3-t,AM=4-2t,
∵A(4,0),C(0,4),
∴AO=CO=4,
∵∠AOC=90°,
∴∠BCA=∠MAQ=45°,
∴QN=CN=3-t
∴PQ=1+t,(2分)
∴S△AMQ=AM•PQ=(4-2t)(1+t)=-t2+t+2.(3分)
∴S=-t2+t+2=-t2+t-++2=-(t-2+,(5分)
∵0≤t<2
∴當(dāng)時(shí),S的值最大.(6分)

(3)存在.(7分)
設(shè)經(jīng)過t秒時(shí),NB=t,OM=2t
則CN=3-t,AM=4-2t
∴∠BCA=∠MAQ=45°(8分)
①若∠AQM=90°,則PQ是等腰Rt△MQA底邊MA上的高
∴PQ是底邊MA的中線
∴PQ=AP=MA
∴1+t=(4-2t)
∴t=
∴點(diǎn)M的坐標(biāo)為(1,0)(10分)
②若∠QMA=90°,此時(shí)QM與QP重合
∴QM=QP=MA
∴1+t=4-2t
∴t=1
∴點(diǎn)M的坐標(biāo)為(2,0).(12分)
點(diǎn)評(píng):本題考查的是二次函數(shù)的有關(guān)知識(shí),考生還需注意的是要學(xué)會(huì)全面分析問題的可行性繼而解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2007•河池)如圖,已知拋物線y=-x2+x+2的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸與x軸交于點(diǎn)D.點(diǎn)M從O點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度向B運(yùn)動(dòng),過M作x軸的垂線,交拋物線于點(diǎn)P,交BC于Q.
(1)求點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)設(shè)當(dāng)點(diǎn)M運(yùn)動(dòng)了x(秒)時(shí),四邊形OBPC的面積為S,求S與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)在線段BC上是否存在點(diǎn)Q,使得△DBQ成為以BQ為一腰的等腰三角形?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省湛江市初中畢業(yè)生學(xué)業(yè)水平綜合測試數(shù)學(xué)試卷(五)(解析版) 題型:解答題

(2007•河池)如圖,已知拋物線y=-x2+x+2的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸與x軸交于點(diǎn)D.點(diǎn)M從O點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度向B運(yùn)動(dòng),過M作x軸的垂線,交拋物線于點(diǎn)P,交BC于Q.
(1)求點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)設(shè)當(dāng)點(diǎn)M運(yùn)動(dòng)了x(秒)時(shí),四邊形OBPC的面積為S,求S與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)在線段BC上是否存在點(diǎn)Q,使得△DBQ成為以BQ為一腰的等腰三角形?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣西河池市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2007•河池)如圖,已知拋物線y=-x2+x+2的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸與x軸交于點(diǎn)D.點(diǎn)M從O點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度向B運(yùn)動(dòng),過M作x軸的垂線,交拋物線于點(diǎn)P,交BC于Q.
(1)求點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)設(shè)當(dāng)點(diǎn)M運(yùn)動(dòng)了x(秒)時(shí),四邊形OBPC的面積為S,求S與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)在線段BC上是否存在點(diǎn)Q,使得△DBQ成為以BQ為一腰的等腰三角形?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《相交線與平行線》(02)(解析版) 題型:填空題

(2007•河池)如圖,直線a,b被直線c所截,且a∥b,如果∠1=65°,那么∠2=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣西河池市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2007•河池)如圖,直線a,b被直線c所截,且a∥b,如果∠1=65°,那么∠2=    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案