【題目】分解因式:a2b﹣2ab+b=_______

【答案】b(a﹣1)2

【解析】先提取公因式b,再利用完全平方公式進行二次分解.

解:a2b﹣2ab+b,

=b(a2﹣2a+1),(提取公因式)

=b(a﹣1)2.(完全平方公式)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個兩位數(shù),十位數(shù)字與個位數(shù)字之和是5,把這個兩位數(shù)的個位數(shù)字與十位數(shù)字對調(diào)后,所得的新兩位數(shù)與原來兩位數(shù)的乘積為736,求原來的兩位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一測量愛好者,在海邊測量位于正東方向的小島高度AC,如圖所示,他先在點B測得山頂點A的仰角為30°,然后向正東方向前行62米,到達D點,在測得山頂點A的仰角為60°(B、C、D三點在同一水平面上,且測量儀的高度忽略不計).求小島高度AC(結(jié)果精確的1米,參考數(shù)值:1.4,1.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下調(diào)查中,適宜全面調(diào)查的是( 。

A. 調(diào)查某批次汽車的抗撞擊能力B. 調(diào)查某班學(xué)生的身高情況

C. 調(diào)查春節(jié)聯(lián)歡晚會的收視率D. 調(diào)查濟寧市居民日平均用水量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ABCD中,對角線AC,BD交于點O,EBD延長線上的點,且ACE是等邊三角形.

(1)四邊形ABCD是菱形嗎?請說明理由;

(2)若∠AED=2EAD,試說明四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,港口A在觀測站O的正東方向,OA=40海里,某船從港口A出發(fā),沿北偏東15°方向航行半小時后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向.求該船航行的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在五張正面分別寫有數(shù)字﹣2,﹣1,0,1,2的卡片,它們的背面完全相同,現(xiàn)將這五張卡片背面朝上洗勻.

1)從中任意抽取一張卡片,則所抽卡片上數(shù)字的絕對值不大于1的概率是 ;

2)先從中任意抽取一張卡片,以其正面數(shù)字作為a的值,然后再從剩余的卡片隨機抽一張,以其正面的數(shù)字作為b的值,請用列表法或畫樹狀圖法,求點Qa,b)在第二象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】著名的瑞士數(shù)學(xué)家歐拉曾指出:可以表示為四個整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為四個整數(shù)平方之和,即 ,這就是著名的歐拉恒等式,有人稱這樣的數(shù)為不變心的數(shù).實際上,上述結(jié)論可減弱為:可以表示為兩個整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為兩個整數(shù)平方之和.

【動手一試】

試將改成兩個整數(shù)平方之和的形式. ;

【閱讀思考】

在數(shù)學(xué)思想中,有種解題技巧稱之為無中生有.例如問題:將代數(shù)式改成兩個平方之差的形式.解:原式

【解決問題】

請你靈活運用利用上述思想來解決不變心的數(shù)問題:將代數(shù)式改成兩個整數(shù)平方之和的形式(其中a、b、c、d均為整數(shù)),并給出詳細的推導(dǎo)過程﹒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,若點A(a,﹣b)在第三象限內(nèi),則點B(b,a)所在的象限是( 。

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

同步練習(xí)冊答案