【題目】某中學為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調查發(fā)現(xiàn),若購買甲種書柜個、乙種書柜個,共需資金元;若購買甲種書柜個,乙種書柜個,共需資金元
(1)甲、乙兩種書柜每個的價格分別是多少元?
(2)若該校計劃購進這兩種規(guī)格的書柜共個,學校至多能夠提供資金元,請設計幾種購買方案供這個學校選擇.(兩種規(guī)格的書柜都必須購買)
【答案】(1)甲,乙兩種書柜的價格分別為元、元;(2)共有三種方案:方案一:購買甲種書柜個.則乙種書柜個,方案二:購買甲種書柜個,則乙種書柜個,方案三:購買甲種書柜個.則乙種書柜.
【解析】
(1)設甲種書柜單價為x元,乙種書柜的單價為y元,根據:購買甲種書柜2個、乙種書柜3個,共需資金1020元;若購買甲種書柜3個,乙種書柜4個,共需資金1440元列出方程組求解即可;
(2)設甲種書柜購買m個,則乙種書柜購買(20-m)個,列出不等式,解不等式即可得不等式的解集,從而確定方案.
解:(1)設甲種書柜每個元,乙種書柜每個元,
依題意得:,
解得:,
所以甲,乙兩種書柜的價格分別為元、元;
(2)設購買甲種書柜個,則乙種書柜個,
得:.
解得:
正整數,
∴的值可以是,,,
共有三種方案:
方案一:購買甲種書柜個.則乙種書柜個,
方案二:購買甲種書柜個,則乙種書柜個,
方案三:購買甲種書柜個.則乙種書柜.
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線軸交于點A(-4,0)和B(1,0)兩點,與y軸交于C點.
(1)求此拋物線的解析式;
(2)設E是線段AB上的動點,作EF∥AC交BC于F,連接CE,當△CEF的面積是△BEF面積的2倍時,求E點的坐標;
(3)若P為拋物線上A、C兩點間的一個動點,過P作y軸的平行線,交AC于Q,當P點運動到什么位置時,線段PQ的值最大,并求此時P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A,B(-1,2)是一次函數與反比例函數
()圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D.
(1)根據圖象直接回答:在第二象限內,當x取何值時,一次函數大于反比例函數的值?
(2)求一次函數解析式及m的值;
(3)P是線段AB上的一點,連接PC,PD,若△PCA和△PDB面積相等,求點P坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:直線AB∥CD,點E. F分別是AB、CD上的點。
(1)如圖1,當點P在AB、CD內部時,試說明:∠EPF=∠AEP+∠CFP;
(2)如圖2,當點P在AB上方時,∠EPF、∠AEP、∠CFP之間有怎樣的數量關系?并說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接EF給出下列五個結論:①AP=EF;②△APD一定是等腰三角形;③AP⊥EF;④PD=EF.其中正確結論的番號是( )
A.①③④B.①②③C.①③D.①②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E是矩形ABCD的邊AB的中點,點F是邊CD上一點,連接ED,EF,ED平分∠AEF,過點D作DG⊥EF于點M,交BC于點G,連接GE,GF,若FG∥DE,則 的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=1,BC=2,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,BE的長為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于點B、點C,經過B、C兩點的拋物線與x軸的另一個交點為A,頂點為P.
(1)求該拋物線的解析式;
(2)連接AC,在x軸上是否存在點Q,使以P、B、Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,每個圖案都由若干個“●”組成,其中第①個圖案中有7個“●”,第②個圖案中有13個“●”,…,則第⑨個圖案中“●”的個數為( )
A.87B.91C.103D.111
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com