給出的下列平面圖形中,屬于軸對稱圖形的是


  1. A.
  2. B.
  3. C.
  4. D.
A
分析:根據軸對稱圖形的概念求解.
解答:根據軸對稱圖形的概念知B、C、D都不是軸對稱圖形,只有A是軸對稱圖形.
故選A.
點評:本題考查軸對稱圖形的知識,注意掌握軸對稱圖形的判斷方法:把某個圖象沿某條直線折疊,如果圖形的兩部分能夠重合,那么這個是軸對稱圖形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

18、探索下列問題:
(1)在圖1給出的四個正方形中,各畫出一條直線(依次是:水平方向的直線、豎直方向的直線、與水平方向成45°角的直線和任意的直線),將每個正方形都分割成面積相等的兩部分;
(2)一條豎直方向的直線m以及任意的直線n,在由左向右平移的過程中,將正六邊形分成左右兩部分,其面積分別記為S1和S2.①請你在圖2中相應圖形下方的橫線上分別填寫S1與S2的數(shù)量關系式(用“<”,“=”,“>”連接);
②請你在圖3中分別畫出反映S1與S2三種大小關系的直線n,并在相應圖形下方的橫線上分別填寫S1與S2的數(shù)量關系式(用“<”,“=”,“>”連接).
(3)是否存在一條直線,將一個任意的平面圖形(如圖4)分割成面積相等的兩部分,請簡略說出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、給出的下列平面圖形中,屬于軸對稱圖形的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•池州一模)我們知道:由于圓是中心對稱圖形,所以過圓心的任何一條直線都可以將圓分割成面積相等的兩部分(如圖1).
探索下列問題:
(1)在如圖2給出的四個正方形中,各畫出一條直線(依次是:水平方向的直線、豎直方向的直線、與水平方向成45°角的直線和任意的直線),將每個正方形都分割成面積相等的兩部分;
(2)一條豎直方向的直線m以及任意的直線n,在由左向右平移的過程中,將正六邊形分成左右兩部分,其面積分別記為S1和S2
①請你在如圖3中相應圖形下方的橫線上分別填寫S1與S2的數(shù)量關系式(用“<”,“=”,“>”連接);
②請你在如圖4中分別畫出反映S1與S2三種大小關系的直線n,并在相應圖形下方的橫線上分別填寫S1與S2的數(shù)量關系式(用“<”,“=”,“>”連接).
(3)是否存在一條直線,將一個任意的平面圖形(如圖5)分割成面積相等的兩部分?請簡略說出理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

給出的下列平面圖形中,屬于軸對稱圖形的是( 。
A.
精英家教網
B.
精英家教網
C.
精英家教網
D.
精英家教網

查看答案和解析>>

同步練習冊答案