【題目】據(jù)新浪網(wǎng)調(diào)查,在第十二屆全國人大二中全會后,全國網(wǎng)民對政府工作報告關(guān)注度非常高,大家關(guān)注的熱點話題分別有:消費、教育、環(huán)保、反腐及其它共五類,且關(guān)注五類熱點問題的網(wǎng)民的人數(shù)所占百分比如圖l所示,關(guān)注該五類熱點問題網(wǎng)民的人數(shù)的不完整條形統(tǒng)計如圖2,請根據(jù)圖中信息解答下列問題.

(1)求出圖l中關(guān)注反腐類問題的網(wǎng)民所占百分比x的值,并將圖2中的不完整的條形統(tǒng)計圖補充完整;

(2)為了深度了解成都網(wǎng)民對政府工作報告的想法,新浪網(wǎng)邀請成都市5名網(wǎng)民代表甲、乙、丙、丁、戊做客新浪訪談,且一次訪談只選2名代表.請你用列表法或畫樹狀圖的方法,求出一次所選代表恰好是丙和丁的概率.

【答案】(1)見解析;(2)

【解析】試題分析:1)根據(jù)單位1,求出反腐占的百分比,得到x的值;根據(jù)環(huán)保人數(shù)除以占的百分比得到總?cè)藬?shù),求出教育與反腐及其他的人數(shù),補全條形統(tǒng)計圖即可;
2)畫樹狀圖得出所有等可能的情況數(shù),找出一次所選代表恰好是重慶代表和深圳代表的情況數(shù),即可求出所求的概率.

試題解析:11﹣15%﹣30%﹣25%﹣10%=20%,所以x=20,

總?cè)藬?shù)為:140÷10%=1400(人)

關(guān)注教育問題網(wǎng)民的人數(shù)1400×25%=350(人),

關(guān)注反腐問題網(wǎng)民的人數(shù)1400×20%=280(人),

關(guān)注其它問題網(wǎng)民的人數(shù)1400×15%=210(人),

如圖2,補全條形統(tǒng)計圖,

2)畫樹狀圖如下:

由樹狀圖可知共有20種等可能結(jié)果,其中一次所選代表恰好是丙和丁的有2種結(jié)果,

所以一次所選代表恰好是丙和丁的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,O,B是數(shù)軸上從左至右的三個點,其中O與原點重合,點A表示的數(shù)為﹣4,且AO+AB11

1)求出點B所表示的數(shù),并在數(shù)軸上把點B表示出來.

2)點C是數(shù)軸上的一個點,且CACB12,求點C表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,將筆記本活頁一角折過去,使角的頂點A落在A處,BC為折痕;

1)圖①中,若∠130°,則∠ABD_____

2)如果在圖中改變∠1的大小,則BA的位置也隨之改變,又將活頁的另一角斜折過去,使BD邊與BA重合,折痕為BE.那么∠CBE的度數(shù)是否會發(fā)生變化呢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1)﹣4.2+5.75.8+10

2)(﹣3×(﹣4)﹣60÷|12|

3

4)﹣14+[(﹣32﹣(122×2]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經(jīng)過B、C兩點.

(1)求拋物線的解析式;

(2)如圖,點E是直線BC上方拋物線上的一動點,當(dāng)△BEC面積最大時,請求出點E的坐標(biāo);

(3)在(2)的結(jié)論下,過點Ey軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

136+-25+12+-15);

2 9+(-2.5)+(+6)+(-3.5);

33.7+-9.1+6.3+-0.9 ;

410--5--6-+18

5)(-12-6--8--12);

65--5+-10+0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P、Q是方格紙中的兩格點,請按要求畫出以PQ為對角線的格點四邊形.(頂點都在格點上的四邊形稱為格點四邊形)

1)在圖①中畫出一個面積最小的中心對稱圖形PAQB,

2)在圖②中畫出一個四邊形PCQD,使其是軸對稱圖形但不是中心對稱圖形,且另一條對角線CD由線段PQ以某一格點為旋轉(zhuǎn)中心旋轉(zhuǎn)得到.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC與△ADE中,AB=AC,AD=AE,∠A是公共角。

(1)BD與CE的數(shù)量關(guān)系是:BD______CE;

(2)把圖①△ABC繞點A旋轉(zhuǎn)一定的角度,得到如圖②所示的圖形。

①求證:BD=CE;

②BD與CE所在直線的夾角與∠DAE的數(shù)量關(guān)系是什么?說明理由。

(3)若AD=10,AB=6,把圖①中的△ABC繞點A順時針旋轉(zhuǎn)α度(0°<α≤360)直接寫出BD長度的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,A是數(shù)軸上位于點B右側(cè)的一點,且AB=26動點PA點出發(fā),每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為tt>s)秒.

(1)數(shù)軸上點B表示的數(shù)______P表示的數(shù)______(用含 t 的代數(shù)式表示)

(2)MAP的中點NBP的中點,在點P運動的過程中,線段MN的長度是______.

(3)動點Q從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,若點PQ同時出發(fā),問多少秒時P、Q之間的距離恰好等于2?

(4)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?

查看答案和解析>>

同步練習(xí)冊答案