(2006•青島)“五•一”黃金周期間,某學校計劃組織385名師生租車旅游,現(xiàn)知道出租公司有42座和60座兩種客車,42座客車的租金每輛為320元,60座客車的租金每輛為460元.
(1)若學校單獨租用這兩種車輛各需多少錢?
(2)若學校同時租用這兩種客車8輛(可以坐不滿),而且要比單獨租用一種車輛節(jié)省租金.請你幫助該學校選擇一種最節(jié)省的租車方案.
【答案】分析:(1)先求出單獨租用每種車的輛數(shù),然后乘以每種車輛的租金即可求出單獨租用每種車輛的費用.(2)根據(jù)租用的8輛客車所載的總?cè)藬?shù)應大于等于師生的總?cè)藬?shù)和所需的費用應比單獨租用車輛的費用少,列出不等式組進行求解,然后分類討論.
解答:解:(1)∵385÷42≈10輛,
∴單獨租用42座客車需10輛,租金為320×10=3200元,
∵385÷60≈7輛,
∴單獨租用60座客車需7輛,租金為460×7=3220元.

(2)設租用42座客車x輛,則60座客車(8-x)輛,由題意得
,
解:42x+60(8-x)≥385,
解得:x≤5,
解320x+460(8-x)<3200,
解得:x>3,
∴不等式組的解集為:
<x≤,
∵x取整數(shù)
∴x=4,5
當x=4時,租金為320×4+460×(8-4)=3120元;
當x=5時,租金為320×5+460×(8-5)=2980元.
答:租用42座客車5輛,60座客車3輛時,租金最少.
點評:解決問題的關鍵是讀懂題意,進而找到所求的量的等量關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2006•青島)已知△ABC在直角坐標系中的位置如圖所示,如果△A′B′C′與△ABC關于y軸對稱,那么點A的對應點A′的坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源:2008年浙教版中考數(shù)學模擬試卷(解析版) 題型:解答題

(2006•青島)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設運動時間為x(s),F(xiàn)G的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).

(1)當x為何值時,OP∥AC;
(2)求y與x之間的函數(shù)關系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•青島)在2006年青島嶗山北宅櫻桃節(jié)前夕,某果品批發(fā)公司為指導今年的櫻桃銷售,對往年的市場銷售情況進行了調(diào)查統(tǒng)計,得到如下數(shù)據(jù):
銷售價 x(元/千克)25242322
銷售量 y(千克)2000250030003500
(1)在如圖的直角坐標系內(nèi),作出各組有序數(shù)對(x,y)所對應的點.連接各點并觀察所得的圖形,判斷y與x之間的函數(shù)關系,并求出y與x之間的函數(shù)關系式;
(2)若櫻桃進價為13元/千克,試求銷售利潤P(元)與銷售價x(元/千克)之間的函數(shù)關系式,并求出當x取何值時,P的值最大.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山東省青島市中考數(shù)學試卷(解析版) 題型:解答題

(2006•青島)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設運動時間為x(s),F(xiàn)G的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).

(1)當x為何值時,OP∥AC;
(2)求y與x之間的函數(shù)關系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山東省青島市中考數(shù)學試卷(解析版) 題型:解答題

(2006•青島)在2006年青島嶗山北宅櫻桃節(jié)前夕,某果品批發(fā)公司為指導今年的櫻桃銷售,對往年的市場銷售情況進行了調(diào)查統(tǒng)計,得到如下數(shù)據(jù):
銷售價 x(元/千克)25242322
銷售量 y(千克)2000250030003500
(1)在如圖的直角坐標系內(nèi),作出各組有序數(shù)對(x,y)所對應的點.連接各點并觀察所得的圖形,判斷y與x之間的函數(shù)關系,并求出y與x之間的函數(shù)關系式;
(2)若櫻桃進價為13元/千克,試求銷售利潤P(元)與銷售價x(元/千克)之間的函數(shù)關系式,并求出當x取何值時,P的值最大.

查看答案和解析>>

同步練習冊答案