精英家教網 > 初中數學 > 題目詳情
如圖,在直角坐標系中,O為原點.點A在x軸的正半軸上,點B在y軸的正半軸上,tan∠OAB=2.二次函數y=x2+mx+2的圖象經過點A,B,頂點為D.
(1)求這個二次函數的解析式;
(2)將△OAB繞點A順時針旋轉90°后,點B落到點C的位置.將上述二次函數圖象沿y軸向上或向下平移后經過點C.請直接寫出點C的坐標和平移后所得圖象的函數解析式;
(3)設(2)中平移后所得二次函數圖象與y軸的交點為B1,頂點為D1.點P在平移后的二次函數圖象上,且滿足△PBB1的面積是△PDD1面積的2倍,求點P的坐標.
【答案】分析:(1)二次函數y=x2+mx+2的圖象經過點B,可得B點坐標為(0,2),再根據tan∠OAB=2求出A點坐標,將A代入解析式即可求得函數解析式;
(2)根據旋轉不變性可輕松求得C點坐標,由于沿y軸運動,故圖象開口大小、對稱軸均不變,設出解析式,代入C點作標即可求解;
(3)由于P點位置不固定,由圖可知要分①當點P在對稱軸的右側時,②當點P在對稱軸的左側,同時在y軸的右側時,③當點P在y軸的左側時,三種情況討論.
解答:解:(1)由題意,點B的坐標為(0,2),(1分)
∴OB=2,
∵tan∠OAB=2,即=2.
∴OA=1.
∴點A的坐標為(1,0).(2分)
又∵二次函數y=x2+mx+2的圖象過點A,
∴0=12+m+2.
解得m=-3,(1分)
∴所求二次函數的解析式為y=x2-3x+2.(1分)

(2)作CE⊥x軸于E,
由于∠BAC=90°,可知∠CAE=∠OBA,△CAE≌△OBA,
可得CE=OA=1,AE=OB=2,可得點C的坐標為(3,1).(2分)
由于沿y軸運動,故圖象開口大小、對稱軸均不變,
設出解析式為y=x2-3x+c,代入C點作標得1=9-9+c,c=1,
所求二次函數解析式為y=x2-3x+1.(1分)

(3)由(2),經過平移后所得圖象是原二次函數圖象向下平移1個單位后所得的圖象,
那么對稱軸直線x=不變,且BB1=DD1=1.(1分)
∵點P在平移后所得二次函數圖象上,
設點P的坐標為(x,x2-3x+1).
在△PBB1和△PDD1中,∵S△PBB1=2S△PDD1,
∴邊BB1上的高是邊DD1上的高的2倍.
①當點P在對稱軸的右側時,x=2(x-),得x=3,
∴點P的坐標為(3,1);
②當點P在對稱軸的左側,同時在y軸的右側時,x=2(-x),得x=1,
∴點P的坐標為(1,-1);
③當點P在y軸的左側時,x<0,又-x=2(-x),
得x=3>0(舍去),
∴所求點P的坐標為(3,1)或(1,-1).(3分)
點評:此題是一道中考壓軸題,將解直角三角形、圖形的旋轉和平移以及點的存在性的探索等問題結合起來,考查了綜合應用各種知識解題的能力,思維跳躍較大,有一定難度.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

18、如圖,在直角坐標系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標為
(24,0)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在直角坐標系中,點P的坐標為(3,4),將OP繞原點O逆時針旋轉90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標和
PP′
的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,O為原點.反比例函數y=
6
x
的圖象經過第一象限的點A,點A的縱坐標是橫坐標的
3
2
倍.
(1)求點A的坐標;
(2)如果經過點A的一次函數圖象與x軸的負半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數的解析式.
(3)點D在反比例函數y=
6
x
的圖象上,且點D在直線AC的右側,作DE⊥x軸于點E,當△ABC與△CDE相似時,求點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,△ABC的三個頂點的坐標分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標上相應字母)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6

(2)三角形(2013)的直角頂點的坐標是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習冊答案