已知在一個(gè)n邊形中,(n-1)個(gè)內(nèi)角的和是1290°,那么這個(gè)n邊形的另一個(gè)內(nèi)角的度數(shù)是

[  ]

A.30°

B.90°

C.120°

D.150°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

為了探究夾角為60°的V形架中放置正多邊形鋼板的穩(wěn)定性問(wèn)題(正多邊形的重心就是它的中心,重心越低越穩(wěn)定),請(qǐng)按以下放置的方式進(jìn)行計(jì)算和猜想:
(1)將一個(gè)邊長(zhǎng)為 20cm的正三角形鋼板(用△ABC表示)按圖1,圖2,圖3,的三種方式進(jìn)行放置.已知在圖3中,重心距地面的距離為
20
3
3
,請(qǐng)通過(guò)計(jì)算或證明說(shuō)明,三種放法中,哪一種放法最穩(wěn)定?
精英家教網(wǎng)
(2)若將(l)中的正三角形鋼板換成邊長(zhǎng)為 20cm的正方形鋼板(如圖4,圖5,圖6).已知在圖6中,重心距地面的距離約為23.7cm,請(qǐng)通過(guò)計(jì)算或證明說(shuō)明,三種放法中,哪一種放法最穩(wěn)定?(可能用到的數(shù)據(jù):
2
≈1.4;
3
≈1.7;
6
≈2.4)
精英家教網(wǎng)
(3)通過(guò)上述計(jì)算,若將一個(gè)邊長(zhǎng)為 20cm的正六邊形鋼板放置于架中(如圖7,圖8,圖9),你認(rèn)為
 
的重心最低(只須填圖形的編號(hào),不必計(jì)算).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下面材料,并回答所提出的問(wèn)題.
三角形內(nèi)角平分線(xiàn)性質(zhì)定理:三角形的內(nèi)角平分線(xiàn)分對(duì)邊所得的兩條線(xiàn)段和這個(gè)角的兩邊對(duì)應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線(xiàn).
求證:
BD
DC
=
AB
AC

分析:要證
BD
DC
=
AB
AC
,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線(xiàn)上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式
BD
DC
=
AB
AC
中,AC恰是BD、DC、AB的第四比例項(xiàng),所以考慮過(guò)C作C精英家教網(wǎng)E∥AD,交BA的延長(zhǎng)線(xiàn)于E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明
BD
DC
=
AB
AC
就可以轉(zhuǎn)化成證AE=AC.
證明:過(guò)C作CE∥DA,交BA的延長(zhǎng)線(xiàn)于E.
CE∥DA?
∠1=∠E
∠2=∠3
∠1=∠2
?∠E=∠3?AE=AC

CE∥DA?
BD
DC
=
BA
AE
AE=AC
?
BD
DC
=
AB
AC

(1)上述證明過(guò)程中,用到了哪些定理?(寫(xiě)對(duì)兩個(gè)定理即可)
(2)在上述分析、證明過(guò)程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個(gè)填在后面的括號(hào)內(nèi).精英家教網(wǎng)[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類(lèi)討論思想.
(3)用三角形內(nèi)角平分線(xiàn)性質(zhì)定理解答問(wèn)題:
已知:如圖,△ABC中,AD是角平分線(xiàn),AB=5cm,AC=4cm,BC=7cm.求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:044

已知在一個(gè)十邊形中,九個(gè)內(nèi)角的和的度數(shù)是1290°,求這個(gè)十邊形的另一個(gè)內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

已知在一個(gè)n邊形中,(n-1)個(gè)內(nèi)角的和是1290°,那么這個(gè)n邊形的另一個(gè)內(nèi)角的度數(shù)是


  1. A.
    30°
  2. B.
    90°
  3. C.
    120°
  4. D.
    150°

查看答案和解析>>

同步練習(xí)冊(cè)答案