年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在□ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),分別連接BE、DF、BD.
(1)求證:△AEB≌△CFD;
(2)若四邊形EBFD是菱形,求∠ABD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知AB是⊙O的直徑,點(diǎn)P是AB延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),過(guò)P作⊙O的切線,切點(diǎn)為C,∠APC的平分線交AC于點(diǎn)D,若∠CPD=20°,則∠CAP等于( )
| A. | 30° | B. | 20° | C. | 45° | D. | 25° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在菱形ABCD中,∠ABC=60°,E是對(duì)角線AC上任意一點(diǎn),F是線段BC延長(zhǎng)線上一點(diǎn),且CF=AE,連接BE、EF.
(1)如圖1,當(dāng)E是線段AC的中點(diǎn),且AB=2時(shí),求△ABC的面積;
(2)如圖2,當(dāng)點(diǎn)E不是線段AC的中點(diǎn)時(shí),求證:BE=EF;
(3)如圖3,當(dāng)點(diǎn)E是線段AC延長(zhǎng)線上的任意一點(diǎn)時(shí),(2)中的結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,平面直角坐標(biāo)系中,已知直線y=x上一點(diǎn)P(1,1),C為y軸上一點(diǎn),連接PC,線段PC繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°至線段PD,過(guò)點(diǎn)D作直線AB⊥x軸,垂足為B,直線AB與直線y=x交于點(diǎn)A,且BD=2AD,連接CD,直線CD與直線y=x交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,BC是⊙O的弦,線段AD經(jīng)過(guò)圓心O,點(diǎn)A在圓上,AD⊥BC,垂足為點(diǎn)D,AB=,且BD:AD=1:2
求:(1)弦BC的長(zhǎng) (2)⊙O的半徑的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)立體圖形三視圖如圖(1)所示,那么這個(gè)立體圖形的名稱是( )
A.三棱柱 B.四棱柱
C.三棱錐 D.四棱錐
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com