如圖①,四邊形ABCD是邊長為5的正方形,以BC的中點O為原點,BC所在直線為x軸建立平面直角坐標系.拋物線y=ax2經(jīng)過A、O、D三點,圖②和圖③是把一些這樣的小正方形及其內(nèi)部拋物線部分經(jīng)過拼組得到的.

(1)a的值為______;
(2)圖②中矩形EFGH的面積為______;
(3)圖③中正方形PQRS的面積為______.
【答案】分析:(1)根據(jù)正方形的邊長為5,可得出A,D的坐標分別是(-2.5,5),(2.5,5).可將A或D的坐標代入拋物線的解析式中即可得出a的值.
(2)看圖②不難看出,E點到H點實際向右平移了3個正方形的邊長,而F到E向上平移了2個正方形的邊長.那么矩形的面積就是3×2×5×5=150.
(3)求正方形的面積就要求出邊長,如果設PQ、QR分別于小正方形的邊長交于Z、V兩點,那么不難得出ZQ=VQ=PQ,可通過建立坐標系來求ZQ、VQ的長,以Q所在的拋物線的頂點為原點作坐標軸,可設出Q點的坐標,然后根據(jù)ZQ=VQ,來求出Q的坐標,進而求出VQ、ZQ和正方形的邊長,也就可以求出正方形的面積.
解答:解:(1)根據(jù)題意得點D的坐標為(,5),把點D(,5)代入y=ax2得a=;

(2)如圖②,根據(jù)題意得正方形IJKL沿射線JU方向平行移動15個單位長度與正方形MNUT重合,
由平行移動的性質可知EH=15,同理可得EF=10,
∴S矩形EFGH=15×10=150;


(3)如圖③,建立平面直角坐標系,
設Q點坐標為(m,m2),
其中m<0,由拋物線,正方形的對稱性可得ZQ=VQ,
-m=5-m2
解得m1=,m2=(舍去),
∴點Q坐標為(-),
∴RQ=2[-(-)]=
∴S正方形PORS=RQ2=(2=
點評:本題主要考查了正方形的性質,圖形的平移以及二次函數(shù)的綜合應用,運用數(shù)形結合的方法求解是本題的基本思路.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂精英家教網(wǎng)足分別為E、F,得四邊形DECF,設DE=x,DF=y.
(1)含y的代數(shù)式表示AE;
(2)y與x之間的函數(shù)關系式,并求出x的取值范圍;
(3)設四邊形DECF的面積為S,x在什么范圍時s隨x增大而增大.x在什么范圍時s隨x增大而減小,并畫出s與x圖象;
(4)求出x為何值時,面積s最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的中線,AE=EF=FC,BE、AD相交于點G,下列4個結論:①DF∥GE;②DF:BG=2:3;③AG=GD;④S△BGD=S四邊形EFDG;其中正確的有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案