如圖,從一個直徑是2的圓形鐵皮中剪下一個圓心角為的扇形.

(1)求這個扇形的面積(結(jié)果保留).

(2)在剩下的三塊余料中,能否從第③塊余料中剪出一個圓作為底面與此扇形圍成一個圓錐?請說明理由.

(3)當的半徑為任意值時,(2)中的結(jié)論是否仍然成立?請說明理由.

解:

(1)連接,由勾股定理求得:

(2)連接并延長,與弧和⊙O交于

的長:

圓錐的底面直徑為:

,不能在余料③中剪出一個圓作為底面與此扇形圍成圓錐.

(3)由勾股定理求得:

的長:

圓錐的底面直徑為:

即無論半徑為何值,

不能在余料③中剪出一個圓作為底面與此扇形圍成圓錐.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,從一個直徑是2的圓形鐵皮中剪下一個圓心角為90°的扇形
(1)求這個扇形的面積(結(jié)果保留π)
(2)在剩下的三塊余料中,能否從第③塊余料中剪出一個圓作為底面與此扇形圍成一個圓錐?請說明理由
(3)當⊙O的半徑R(R>0)為任意值時,(2)中的結(jié)論是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,從一個直徑是1m的圓形鐵皮中剪出一個圓心角為90°的扇形.
(1)求被剪掉的部分的面積.(陰影部分)
(2)如果將剪下來的扇形圍成一個圓錐,圓錐的底面圓的半徑是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《圓》常考題集(35):3.7 弧長及扇形的面積(解析版) 題型:解答題

如圖,從一個直徑是2的圓形鐵皮中剪下一個圓心角為90°的扇形
(1)求這個扇形的面積(結(jié)果保留π)
(2)在剩下的三塊余料中,能否從第③塊余料中剪出一個圓作為底面與此扇形圍成一個圓錐?請說明理由
(3)當⊙O的半徑R(R>0)為任意值時,(2)中的結(jié)論是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第24章《圓(下)》?碱}集(22):24.4 圓的有關計算(解析版) 題型:解答題

如圖,從一個直徑是2的圓形鐵皮中剪下一個圓心角為90°的扇形
(1)求這個扇形的面積(結(jié)果保留π)
(2)在剩下的三塊余料中,能否從第③塊余料中剪出一個圓作為底面與此扇形圍成一個圓錐?請說明理由
(3)當⊙O的半徑R(R>0)為任意值時,(2)中的結(jié)論是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《圓》中考題集(75):3.7 弧長及扇形的面積(解析版) 題型:解答題

如圖,從一個直徑是2的圓形鐵皮中剪下一個圓心角為90°的扇形
(1)求這個扇形的面積(結(jié)果保留π)
(2)在剩下的三塊余料中,能否從第③塊余料中剪出一個圓作為底面與此扇形圍成一個圓錐?請說明理由
(3)當⊙O的半徑R(R>0)為任意值時,(2)中的結(jié)論是否仍然成立?請說明理由.

查看答案和解析>>

同步練習冊答案