(2006•鄂爾多斯)閱讀理解:
給定一個(gè)矩形,如果存在另一個(gè)矩形,它的周長(zhǎng)和面積分別是已知矩形的周長(zhǎng)和面積的2倍,則這個(gè)矩形是給定矩形的“加倍”矩形.如圖,矩形A1B1C1D1是矩形ABCD的“加倍”矩形.請(qǐng)你解決下列問題:
(1)邊長(zhǎng)為a的正方形存在“加倍”正方形嗎?如果存在,求出“加倍”正方形的邊長(zhǎng);如果不存在,說明理由.
(2)當(dāng)矩形的長(zhǎng)和寬分別為m,n時(shí),它是否存在“加倍”矩形?請(qǐng)作出判斷,說明理由.

【答案】分析:(1)根據(jù)題意:若兩個(gè)正方形是相似圖形,根據(jù)相似圖形的性質(zhì),面積比是相似比即周長(zhǎng)比的平方;故不存在“加倍”正方形;
(2)設(shè)“加倍”矩形的長(zhǎng)和寬分別為x,y,可得的關(guān)系,分析可得x,y就是關(guān)于A的方程A2-2(m+n)A+2mn=0的兩個(gè)正根,判斷可得:△=m2+n2>0,故存在“加倍”矩形.
解答:解:(1)不存在.
因?yàn)閮蓚(gè)正方形是相似圖形,當(dāng)它們的周長(zhǎng)比為2時(shí),則面積比必定是4,所以不存在.
(相同解答均可給分,如:滿足周長(zhǎng)是2倍時(shí),則面積就成了4倍,所以不存在)(4分)

(2)存在.(5分)
設(shè)“加倍”矩形的長(zhǎng)和寬分別為x,y.
則:.(7分)
x,y就是關(guān)于A的方程A2-2(m+n)A+2mn=0的兩個(gè)正根.(8分)
∵△=[-2(m+n)]2-8mn=m2+n2(9分).
當(dāng)m,n不同時(shí)為零時(shí),此題中,m>0,n>0.
∴△=m2+n2>0.(10分)
∴方程有兩個(gè)不相等的正實(shí)數(shù)根x和y(11分)
即:存在一個(gè)矩形是已知矩形的“加倍”矩形(12分)
點(diǎn)評(píng):解答本題要充分利用所有正方形相似的特殊性質(zhì);注意用根的判別式來判斷根的存在問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,在△ABC中,AB=AC=5,以AB為直徑的⊙P交BC于H.點(diǎn)A,B在x軸上,點(diǎn)H在y軸上,B點(diǎn)的坐標(biāo)為(1,0).
(1)求點(diǎn)A,H,C的坐標(biāo);
(2)過H點(diǎn)作AC的垂線交AC于E,交x軸于F,求證:EF是⊙P的切線;
(3)求經(jīng)過A,O兩點(diǎn)且頂點(diǎn)到x軸的距離等于4的拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,點(diǎn)P在y軸上,⊙P交x軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于C,過點(diǎn)C的直線y=2x+b交x軸于D,且⊙P的半徑為,AB=4.
(1)求點(diǎn)B,P,C的坐標(biāo);
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點(diǎn)B,求這個(gè)二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年甘肅省甘南州合作一中高中民族班、實(shí)驗(yàn)班招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,點(diǎn)P在y軸上,⊙P交x軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于C,過點(diǎn)C的直線y=2x+b交x軸于D,且⊙P的半徑為,AB=4.
(1)求點(diǎn)B,P,C的坐標(biāo);
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點(diǎn)B,求這個(gè)二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年內(nèi)蒙古鄂爾多斯市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,點(diǎn)P在y軸上,⊙P交x軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于C,過點(diǎn)C的直線y=2x+b交x軸于D,且⊙P的半徑為,AB=4.
(1)求點(diǎn)B,P,C的坐標(biāo);
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點(diǎn)B,求這個(gè)二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年內(nèi)蒙古鄂爾多斯市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•鄂爾多斯)如圖,在△ABC中,AB=AC=5,以AB為直徑的⊙P交BC于H.點(diǎn)A,B在x軸上,點(diǎn)H在y軸上,B點(diǎn)的坐標(biāo)為(1,0).
(1)求點(diǎn)A,H,C的坐標(biāo);
(2)過H點(diǎn)作AC的垂線交AC于E,交x軸于F,求證:EF是⊙P的切線;
(3)求經(jīng)過A,O兩點(diǎn)且頂點(diǎn)到x軸的距離等于4的拋物線解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案