如圖,A,B是⊙O上的兩個定點,P是⊙O上的動點(P不與A,B重合),我們稱∠APB是⊙O上關(guān)于A、B的滑動角
(1)已知∠APB是⊙O上關(guān)于點A、B的滑動角,
①若AB是⊙O的直徑,則∠APB= °;
②若⊙O的半徑是1,AB=,求∠APB的度數(shù);
(2)已知O2是⊙O1外一點,以O(shè)2為圓心作一個圓與⊙O1相交于A、B兩點,∠APB是⊙O1上關(guān)于點A、B的滑動角,直線PA、PB分別交⊙O2于M、N(點M與點A、點N與點B均不重合),連接AN,試探索∠APB與∠MAN、∠ANB之間的數(shù)量關(guān)系,直接寫出結(jié)論.
(1) ①90°②∠APB=135°
(2)∠APB=∠MAN-∠ANB;∠APB=∠MAN+∠ANB-180°;
∠APB=180°-∠MAN-∠ANB;∠APB=∠MAN+∠ANB
【解析】
試題分析:(1)①90°
②如圖,連接AB、OA、OB.
在△AOB中,∵OA=OB=1.AB= ,∴OA2+OB2=AB2
∴∠AOB=90°。
當(dāng)點P在優(yōu)弧 AB 上時(如圖1),∠APB= ∠AOB=45°;
當(dāng)點P在劣弧 AB 上時(如圖2),
∠APB= (360°-∠AOB)=135°。
(2)根據(jù)點P在⊙O1上的位置分為以下四種情況.
第一種情況:點P在⊙O2外,且點A在點P與點M之間,點B在點P與點N之間,如圖3,
∵∠MAN=∠APB+∠ANB,
∴∠APB=∠MAN-∠ANB。
第二種情況:點P在⊙O2外,且點A在點P與點M之間,點N在點P與點B之間,如圖4,
∵∠MAN=∠APB+∠ANP=∠APB+(180°-∠ANB),
∴∠APB=∠MAN+∠ANB-180°。
第三種情況:點P在⊙O2外,且點M在點P與點A之間,點B在點P與點N之間,如圖5,
∵∠APB+∠ANB+∠MAN=180°,
∴∠APB=180°-∠MAN-∠ANB。
第四種情況:點P在⊙O2內(nèi),如圖6,
∠APB=∠MAN+∠ANB。
考點:圓周角定理;勾股定理逆定理;三角形內(nèi)角和定理和外角性質(zhì)
點評:難度中等,關(guān)鍵在于分類討論,區(qū)分點P在優(yōu)弧和劣弧上兩種情況討論。
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com