【題目】在平面直角坐標(biāo)系中,拋物線y=x2+(k﹣1)x﹣k與直線y=kx+1交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).
(1)如圖1,當(dāng)k=1時(shí),直接寫出A,B兩點(diǎn)的坐標(biāo);
(2)在(1)的條件下,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AB下方,試求出△ABP面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線y=x2+(k﹣1)x﹣k(k>0)與x軸交于點(diǎn)C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),在直線y=kx+1上是否存在唯一一點(diǎn)Q,使得∠OQC=90°?若存在,請(qǐng)求出此時(shí)k的值;若不存在,請(qǐng)說明理由.
【答案】
(1)
解:當(dāng)k=1時(shí),拋物線解析式為y=x2﹣1,直線解析式為y=x+1.
聯(lián)立兩個(gè)解析式,得:x2﹣1=x+1,
解得:x=﹣1或x=2,
當(dāng)x=﹣1時(shí),y=x+1=0;當(dāng)x=2時(shí),y=x+1=3,
∴A(﹣1,0),B(2,3)
(2)
解:方法一:設(shè)P(x,x2﹣1).
如答圖2所示,過點(diǎn)P作PF∥y軸,交直線AB于點(diǎn)F,則F(x,x+1).
∴PF=yF﹣yP=(x+1)﹣(x2﹣1)=﹣x2+x+2.
S△ABP=S△PFA+S△PFB= PF(xF﹣xA)+ PF(xB﹣xF)= PF(xB﹣xA)= PF
∴S△ABP= (﹣x2+x+2)=﹣ (x﹣ )2+
當(dāng)x= 時(shí),yP=x2﹣1=﹣ .
∴△ABP面積最大值為 ,此時(shí)點(diǎn)P坐標(biāo)為( ,﹣ )
方法二:過點(diǎn)P作x軸垂線,交直線AB于F,
設(shè)P(t,t2﹣1),則F(t,t+1)
∴S△ABP= (FY﹣PY)(BX﹣AX),
∴S△ABP= (t+1﹣t2+1)(2+1),
∴S△ABP=﹣ t2+ t+3,
當(dāng)t= 時(shí),S△ABP有最大值,∴S△ABP=
(3)
解:方法一:設(shè)直線AB:y=kx+1與x軸、y軸分別交于點(diǎn)E、F,
則E(﹣ ,0),F(xiàn)(0,1),OE= ,OF=1.
在Rt△EOF中,由勾股定理得:EF= = .
令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.
∴C(﹣k,0),OC=k.
Ⅰ、假設(shè)存在唯一一點(diǎn)Q,使得∠OQC=90°,如答圖3所示,
則以O(shè)C為直徑的圓與直線AB相切于點(diǎn)Q,根據(jù)圓周角定理,此時(shí)∠OQC=90°.
設(shè)點(diǎn)N為OC中點(diǎn),連接NQ,則NQ⊥EF,NQ=CN=ON= .
∴EN=OE﹣ON= ﹣ .
∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,
∴△EQN∽△EOF,
∴ ,即: ,
解得:k=± ,
∵k>0,
∴k= .
∴存在唯一一點(diǎn)Q,使得∠OQC=90°,此時(shí)k= .
Ⅱ、若直線AB過點(diǎn)C時(shí),此時(shí)直線與圓的交點(diǎn)只有另一點(diǎn)Q點(diǎn),故亦存在唯一一點(diǎn)Q,使得∠OQC=90°,
將C(﹣k,0)代入y=kx+1中,
可得k=1,k=﹣1(舍去),
故存在唯一一點(diǎn)Q,使得∠OQC=90°,此時(shí)k=1.
綜上所述,k= 或1時(shí),存在唯一一點(diǎn)Q,使得∠OQC=90°
方法二:∵y=x2+(k﹣1)x﹣k,
∴y=(x+k)(x﹣1),
當(dāng)y=0時(shí),x1=﹣k,x2=1,
∴C(﹣k,0),D(1,0),
點(diǎn)Q在y=kx+1上,設(shè)Q(t,kt+1),O(0,0),
∵∠OQC=90°,∴CQ⊥OQ,∴KCQ×KOQ=﹣1,
∴ <
∴(k2+1)t2+3kt+1=0有唯一解,
∴△=(3k)2﹣4(k2+1)=0,
∴k1= ,k2=﹣ (k>0故舍去),∴k=
【解析】方法一:(1)當(dāng)k=1時(shí),聯(lián)立拋物線與直線的解析式,解方程求得點(diǎn)A、B的坐標(biāo);(2)如答圖2,作輔助線,求出△ABP面積的表達(dá)式,然后利用二次函數(shù)的性質(zhì)求出最大值及點(diǎn)P的坐標(biāo);(3)“存在唯一一點(diǎn)Q,使得∠OQC=90°”的含義是,以O(shè)C為直徑的圓與直線AB相切于點(diǎn)Q,由圓周角定理可知,此時(shí)∠OQC=90°且點(diǎn)Q為唯一.以此為基礎(chǔ),構(gòu)造相似三角形,利用比例式列出方程,求得k的值.需要另外注意一點(diǎn)是考慮直線AB是否與拋物線交于C點(diǎn),此時(shí)亦存在唯一一點(diǎn)Q,使得∠OQC=90°.方法二:(1)聯(lián)立直線與拋物線方程求出點(diǎn)A,B坐標(biāo).(2)利用面積公式求出P點(diǎn)坐標(biāo).(3)列出定點(diǎn)O坐標(biāo),用參數(shù)表示C,Q點(diǎn)坐標(biāo),利用黃金法則二求出k的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把邊長(zhǎng)為3的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到正方形AB′C′D′,邊BC與D′C′交于點(diǎn)O,則四邊形ABOD′的周長(zhǎng)是( )
A. 6B. 6C. 3D. 3+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程﹣1的步驟如下:
(解析)第一步:﹣1(分?jǐn)?shù)的基本性質(zhì))
第二步:2x﹣1=3(2x+8)﹣3……(①)
第三步:2x﹣1=6x+24﹣3……(②)
第四步:2x﹣6x=24﹣3+1……(③)
第五步:﹣4x=22(④)
第六步:x=﹣……(⑤)
以上解方程第二步到第六步的計(jì)算依據(jù)有:①去括號(hào)法則.②等式性質(zhì)一.③等式性質(zhì)二.④合并同類項(xiàng)法則.請(qǐng)選擇排序完全正確的一個(gè)選項(xiàng)( 。
A. ②①③④② B. ②①③④③ C. ③①②④③ D. ③①④②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知A(-1,5),B(4,2),C(-1,0)三點(diǎn).
(1)點(diǎn)A的對(duì)稱點(diǎn)A′的坐標(biāo)為(1,-5),點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B′的坐標(biāo)為________,點(diǎn)C關(guān)于y軸的對(duì)稱點(diǎn)C′的坐標(biāo)為________;
(2)求(1)中的△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)a,b,c滿足(a-)2++|c-2|=0.
(1)求a,b,c的值;
(2)試問以a,b,c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,求出三角形的周長(zhǎng)和面積;若不能構(gòu)成三角形,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林在某商店購買商品A、B若干次(每次A、B兩種商品都購買),其中第一、二兩次購買時(shí),均按標(biāo)價(jià)購買;第三次購買時(shí),商品A、B同時(shí)打折.三次購買商品A、B的數(shù)量和費(fèi)用如表所示.
購買商品A的數(shù)量/個(gè) | 購買商品B的數(shù)量/個(gè) | 購買總費(fèi)用/元 | |
第一次購物 | 6 | 5 | 980 |
第二次購物 | 3 | 7 | 940 |
第三次購物 | 9 | 8 | 912 |
(1)求商品A、B的標(biāo)價(jià);
(2)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?
(3)在(2)的條件下,若小林第四次購物共花去了960元,則小林有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y= x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線段AB、OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為( )
A.(﹣3,0)
B.(﹣6,0)
C.(﹣ ,0)
D.(﹣ ,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某船在A、B兩地之間航行,順?biāo)叫行枰?/span>4小時(shí),逆水行需要5小時(shí),水流速度為2千米/時(shí).
(1)求船在靜水中的速度.
(2)若船從A地順?biāo)叫械?/span>B地,然后逆流返回,到達(dá)距離A地26千米的C地,一共航行了多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)連接在一起的菱形的邊長(zhǎng)都是1cm,一只電子甲蟲從點(diǎn)A開始按ABCDAEFGAB…的順序沿菱形的邊循環(huán)爬行,當(dāng)電子甲蟲爬行2014cm時(shí)停下,則它停的位置是( )
A. 點(diǎn)F B. 點(diǎn)E C. 點(diǎn)A D. 點(diǎn)C
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com