(2006,福州)我們知道,“直角三角形斜邊上的高線將三角形分成兩個(gè)與原三角形相似的直角三角形”,用這一方法,將矩形ABCD分割成大小不同的七個(gè)相似直角三角形,按從大到小的順序編號(hào)為①至⑦(如圖),從而制成一副“三角七巧板”.

已知線段AB=1,∠BAC=θ

(1)請(qǐng)用θ的三角函數(shù)表示線段BE的長(zhǎng):________;

(2)圖中與線段BE相等的線段是________;

(3)仔細(xì)觀察圖形,求出⑦中最短的直角邊DH的長(zhǎng)(用θ的三角函數(shù)表示).

答案:略
解析:

(1)sinθ

(2)DF

(3)解:由(1)(2)DF=BE=sinθ

由題意知Rt△DFGRt△CBA,

∴∠DFG=∠CAB=θ

Rt△DFG中,

,DF=sinθ

∵Rt△DGHRt△DFG,∴∠DHG=∠DFG=θ

Rt△DGH中,

,,


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2006•青島)已知△ABC在直角坐標(biāo)系中的位置如圖所示,如果△A′B′C′與△ABC關(guān)于y軸對(duì)稱,那么點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2006•鹽城)已知:AB為⊙O的直徑,P為AB弧的中點(diǎn).
(1)若⊙O′與⊙O外切于點(diǎn)P(見(jiàn)圖甲),AP、BP的延長(zhǎng)線分別交⊙O′于點(diǎn)C、D,連接CD,則△PCD是
等腰直角
等腰直角
三角形;
(2)若⊙O′與⊙O相交于點(diǎn)P、Q(見(jiàn)圖乙),連接AQ、BQ并延長(zhǎng)分別交⊙O′于點(diǎn)E、F,請(qǐng)選擇下列兩個(gè)問(wèn)題中的一個(gè)作答:
問(wèn)題一:判斷△PEF的形狀,并證明你的結(jié)論;
問(wèn)題二:判斷線段AE與BF的關(guān)系,并證明你的結(jié)論.
我選擇問(wèn)題
,結(jié)論:
△PEF是等腰直角三角形
△PEF是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:047

(2006,紹興)我們知道,兩邊及其中一邊的對(duì)角分別對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.那么在什么情況下,它們會(huì)全等?

(1)閱讀與證明:

對(duì)于這兩個(gè)三角形均為直角三角形,顯然它們?nèi)龋?/P>

對(duì)于這兩個(gè)三角形均為鈍角三角形,可證它們?nèi)?證明略).

對(duì)于這兩個(gè)三角形均為銳角三角形,它們也全等,可證明如下:

已知:△ABC、均為銳角三角形,,

求證:△ABC

(請(qǐng)你將下列證明過(guò)程補(bǔ)充完整.)

證明:如圖,分別過(guò)點(diǎn)B、BDCAD,

,

,

(2)歸納與敘述:

由(1)可得到一個(gè)正確結(jié)論,請(qǐng)你寫(xiě)出這個(gè)結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年浙江省紹興市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•紹興)我們知道,兩邊及其中一邊的對(duì)角分別對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.那么在什么情況下,它們會(huì)全等?
(1)閱讀與證明:
對(duì)于這兩個(gè)三角形均為直角三角形,顯然它們?nèi)龋?br />對(duì)于這兩個(gè)三角形均為鈍角三角形,可證它們?nèi)龋ㄗC明略).
對(duì)于這兩個(gè)三角形均為銳角三角形,它們也全等,可證明如下:
已知:△ABC、△A1B1C1均為銳角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl
求證:△ABC≌△A1B1C1
(請(qǐng)你將下列證明過(guò)程補(bǔ)充完整.)
證明:分別過(guò)點(diǎn)B,B1作BD⊥CA于D,
B1D1⊥C1A1于D1
則∠BDC=∠B1D1C1=90°,
∵BC=B1C1,∠C=∠C1,
∴△BCD≌△B1C1D1
∴BD=B1D1
(2)歸納與敘述:
由(1)可得到一個(gè)正確結(jié)論,請(qǐng)你寫(xiě)出這個(gè)結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案