【題目】下圖是由幾個(gè)相同的小正方體搭成的幾何體,

(1)搭成這個(gè)幾何體需要      個(gè)小正方體;

(2)畫(huà)出這個(gè)幾何體的主視圖和左視圖;

(3)在保持主視圖和左視圖不變的情況下,最多可以拿掉n個(gè)小正方體,則n=     ,請(qǐng)?jiān)趥溆脠D中畫(huà)出拿掉n個(gè)小正方體后新的幾何體的俯視圖.

【答案】(1)10;(2)見(jiàn)解析;(3)1

【解析】

試題(1)觀察可知共有三層,最下面一層有6個(gè),中間一層有3個(gè),最上一層有1個(gè),加起來(lái)即可得總個(gè)數(shù);

(2)觀察即可得,主視圖可得到從左往右3列的正方形的個(gè)數(shù)依次為3,1,2;左視圖得到從左往右3列的正方形的個(gè)數(shù)依次為3,2,1,據(jù)此可畫(huà)出圖形;

(3)如圖,要想保證主視圖和左視圖不變的情況下,只能拿掉圖中標(biāo)涂紅色的兩個(gè)小正方體中的一個(gè).

試題解析:(1)觀察可知共有三層,最下面一層有6個(gè),中間一層有3個(gè),最上一層有1個(gè),

6+3+1=10,

故答案為:10;

(2)如圖所示;

(3)如圖,要想保持主視圖和左視圖不變,只能拿掉圖中涂紅色的兩塊中的一塊,故n=1,

新幾何體的俯視圖如下.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,L1,L2分別表示一種白熾燈和一種節(jié)能燈的費(fèi)用y(費(fèi)用=燈的售價(jià)+電費(fèi),單位:元)與照明時(shí)間x(h)的函數(shù)圖像,假設(shè)兩種燈的使用壽命都是2000h,照明效果一樣.

(1)根據(jù)圖像分別求出L1,L2的函數(shù)關(guān)系式.

(2)當(dāng)照明時(shí)間為多少時(shí),兩種燈的費(fèi)用相等?

(3)小亮房間計(jì)劃照明2500h,他買(mǎi)了一個(gè)白熾燈和一個(gè)節(jié)能燈,請(qǐng)你幫他設(shè)計(jì)最省錢(qián)的用燈方法(直接給出答案,不必寫(xiě)出解答過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知雙曲線y= 經(jīng)過(guò)點(diǎn)B(3 ,1),點(diǎn)A是雙曲線第三象限上的動(dòng)點(diǎn),過(guò)B作BC⊥y軸,垂足為C,連接AC.
(1)求k的值;
(2)若△ABC的面積為6 ,求直線AB的解析式;
(3)在(2)的條件下,寫(xiě)出反比例函數(shù)值大于一次函數(shù)值時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,AECF,且分別交對(duì)角線BD于點(diǎn)E,F

(1)求證:AEB≌△CFD;

(2)連接AF,CE,若∠AFE=CFE,求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,,,,EBC的中點(diǎn),PAB上的任意一點(diǎn),連接PE,將PE繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)得到PQ,過(guò)A點(diǎn),D點(diǎn)分別作BC的垂線,垂足分別為MN

AM的值;

連接AC,若PAB的中點(diǎn),求PE的長(zhǎng);

若點(diǎn)Q落在ABAD邊所在直線上,請(qǐng)直接寫(xiě)出BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y= 的圖象位于第二、第四象限,那么關(guān)于x的一元二次方程x2+2x+k=0的根的情況是(
A.方程有兩個(gè)不想等的實(shí)數(shù)根
B.方程不一定有實(shí)數(shù)根
C.方程有兩個(gè)相等的實(shí)數(shù)根
D.方程沒(méi)有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的直徑CD=10,AB是⊙O的弦,AB⊥CD,垂足為M,且AB=8,則AC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,且DEAC,CEBD.

(1)求證:四邊形OCED是菱形;

(2)若∠BAC=30°,AC=4,求菱形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD的對(duì)角線交于點(diǎn)E,有AE=EC,BE=ED,以AB為直徑的⊙O過(guò)點(diǎn)E.
(1)求證:四邊形ABCD的是菱形;
(2)若CD的延長(zhǎng)線與圓相切于點(diǎn)F,已知直徑AB=4,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案