【題目】如圖,BD是ABCD的對角線,點E、F分別在BD上,連接AE、CF.
(1)請你添加一個條件,使△AED≌△CFB,并給予證明;
(2)在你添加的條件后,不再添加其它條件,寫出圖中所有全等的三角形.
【答案】(1)DE=BF,見解析;(2)△AED≌△CFB,△ABD≌△CDB,△ABE≌△CDF,見解析
【解析】
(1)添加條件:DE=BF;由平行四邊形的性質(zhì)得出AD=BC,AD∥BC,∴∠ADE=∠CBF,由SAS證明△AED≌△CFB即可;
(2)由(1)得:△AED≌△CFB;得出AE=CF,由SSS證明△ABD≌△CDB,由SSS證明△ABE≌△CDF即可.
解:(1)添加條件:DE=BF;理由如下:
∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,
∴∠ADE=∠CBF,
在△AED和△CFB中,,
∴△AED≌△CFB(SAS);
(2)圖中所有全等的三角形為△AED≌△CFB,△ABD≌△CDB,△ABE≌△CDF;理由如下:
由(1)得:△AED≌△CFB;
∴AE=CF,
∵四邊形ABCD是平行四邊形,
∴AD=CB,AB=CD,
在△ABD和△CDB中,,
∴△ABD≌△CDB(SSS);
∵BF=DE,
∴BE=DF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(SSS).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題的逆命題成立的有( )
①勾股數(shù)是三個正整數(shù) ②全等三角形的三條對應(yīng)邊分別相等
③如果兩個實數(shù)相等,那么它們的平方相等 ④平行四邊形的兩組對角分別相等
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若將四根木條釘成的矩形木框ABCD變形為平行四邊形A′BCD′,并使其面積為矩形ABCD面積的一半,若A′D′與CD交于點E,且AB=2,則△ECD′的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】選擇適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>:
(1)7x(3x-4)=9(3x-4);
(2)x2-6x+9=(5-2x)2;
(3)2x2-5x-7=0;
(4)x2-2x-1=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形頂點為軸正半軸上一點,點在第一象限,點的坐標(biāo)為,連接.動點在射線上(點不與點、點重合),點在線段的延長線上,連接、,,設(shè)的長為.
(1)填空:線段的長=________,線段的長=________;
(2)求的長,并用含的代數(shù)式表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的內(nèi)切圓與三邊分別相切于點D、E、F,則下列等式:
①∠EDF=∠B;
②2∠EDF=∠A+∠C;
③2∠A=∠FED+∠EDF;
④∠AED+∠BFE+∠CDF=180°,其中成立的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四個均由十六個小正方形組成的正方形網(wǎng)格中,各有一個三角形ABC,那么這四個三角形中,不是直角三角形的是( 。
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com