(2013•德惠市二模)如圖,在平面直角坐標(biāo)系中,三個(gè)小正方形的邊長(zhǎng)均為1,且正方形的邊與坐標(biāo)軸平行,邊DE落在x軸的正半軸上,邊AG落在y軸的正半軸上,A、B兩點(diǎn)在拋物線(xiàn)y=-
1
2
x2+bx+c上.
(1)直接寫(xiě)出點(diǎn)B的坐標(biāo);
(2)求拋物線(xiàn)y=-
1
2
x2+bx+c的解析式;
(3)將正方形CDEF沿x軸向右平移,使點(diǎn)F落在拋物線(xiàn)y=-
1
2
x2+bx+c上,求平移的距離.
分析:(1)由圖中的三個(gè)小正方形的邊長(zhǎng)為1,根據(jù)圖形可以知道B點(diǎn)的橫坐標(biāo)為1,做那個(gè)坐標(biāo)為3,從而得出點(diǎn)B的坐標(biāo).
(2)根據(jù)圖象求出點(diǎn)A的坐標(biāo),再把A、B的坐標(biāo)代入解析式,根據(jù)待定系數(shù)法就可以求出b、c的值,從而求出拋物線(xiàn)的解析式.
(3)實(shí)際上就是當(dāng)y=1時(shí)代入解析式就可以求出平移后點(diǎn)F′的橫坐標(biāo),就可以求出E′點(diǎn)的坐標(biāo),此時(shí)OE′-3就是平移的距離.
解答:解:(1)由圖象,得B(1,3).

(2)由題意,得A(0,2)
3=-
1
2
+b+c
2=c
,解得:
b=
3
2
c=2

y=-
1
2
x2+
3
2
x+2
,
∴拋物線(xiàn)的解析式為:y=-
1
2
x2+
3
2
x+2


(3)當(dāng)y=1時(shí),
1=-
1
2
x2+
3
2
x+2
解得:
x=
3+
17
2
3-
17
2
(不符合題意應(yīng)舍去),
∴F′(
3+
17
2
,1),
∴E′(
3+
17
2
,0),
∴OE′=
3+
17
2

∴平移的距離為:
17
-3
2
點(diǎn)評(píng):本題是一道二次函數(shù)綜合試題,考查了求點(diǎn)的坐標(biāo),用待定系數(shù)法求函數(shù)的解析式,平移的運(yùn)用等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德惠市二模)如圖1,在△ABC中,∠ACB=90°,DE⊥AC,DF⊥BC,AD=3,DB=4,將圖1中△ADE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°可以得到圖2,則圖1中△ADE和△BDF面積之和為
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德惠市二模)某次募捐活動(dòng)共募集善款13.56萬(wàn)元,將13.56萬(wàn)元用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德惠市二模)如圖擺放的正三棱柱的左視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德惠市二模)某校七年級(jí)學(xué)生參加課外活動(dòng)人數(shù)的扇形統(tǒng)計(jì)圖如圖所示.若參加舞蹈類(lèi)的學(xué)生有40人,則參加球類(lèi)活動(dòng)的學(xué)生人數(shù)有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案