【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.
【答案】(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形;(3).
【解析】試題分析:(1)利用三角形的中位線得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結(jié)論;
(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結(jié)論;
(3)先判斷出MN最大時,△PMN的面積最大,進(jìn)而求出AN,AM,即可得出MN最大=AM+AN,最后用面積公式即可得出結(jié)論.
試題解析:(1)∵點P,N是BC,CD的中點,
∴PN∥BD,PN=BD,
∵點P,M是CD,DE的中點,
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∵PN∥BD,
∴∠DPN=∠ADC,
∵PM∥CE,
∴∠DPM=∠DCA,
∵∠BAC=90°,
∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
∴PM⊥PN,
故答案為:PM=PN,PM⊥PN,
(2)由旋轉(zhuǎn)知,∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,BD=CE,
同(1)的方法,利用三角形的中位線得,PN=BD,PM=CE,
∴PM=PN,
∴△PMN是等腰三角形,
同(1)的方法得,PM∥CE,
∴∠DPM=∠DCE,
同(1)的方法得,PN∥BD,
∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,
∴∠ACB+∠ABC=90°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形,
(3)如圖2,同(2)的方法得,△PMN是等腰直角三角形,
∴MN最大時,△PMN的面積最大,
∴DE∥BC且DE在頂點A上面,
∴MN最大=AM+AN,
連接AM,AN,
在△ADE中,AD=AE=4,∠DAE=90°,
∴AM=2,
在Rt△ABC中,AB=AC=10,AN=5,
∴MN最大=2+5=7,
∴S△PMN最大=PM2=×MN2=×(7)2= .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點P(2,3),點D是正比例函數(shù)圖象上的一點,過點D作y軸的垂線,垂足分別Q,DQ交反比例函數(shù)的圖象于點A,過點A作x軸的垂線,垂足為B,AB交正比例函數(shù)的圖于點E.
(1)求正比例函數(shù)解析式、反比例函數(shù)解析式.
(2)當(dāng)點D的縱坐標(biāo)為9時,求:點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點A在x軸上,點C在y軸上,點B的坐標(biāo)是,將沿直線BD折疊,使得點C落在對角線OB上的點E處,折痕與OC交于點D.
(1)求直線OB的解析式及線段OE的長.
(2)求直線BD的解析式及點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用“☆”定義一種新運算:對于任意有理數(shù)a和b,規(guī)定a☆b=.例如:☆2=.從-50,-40,-30,-20,-10,0,10,20,30,40,50中任選兩個有理數(shù)做a,b(a≠b)的值,并計算a☆b,那么所有運算結(jié)果中的最大值是_________ .最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是長為10m,傾斜角為37°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈,tan37°≈,sin65°≈,tan65°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊿ABC中,AB=AC,∠BAC=,點D在線段BC上運動(不與點B、C重合),連接AD,作∠1=∠C,DE交線段AC于點E.
(1)若∠BAD=,求∠EDC的度數(shù);
(2)當(dāng)DC=AC時,求證:⊿ABD≌⊿DCE ;
(3)當(dāng)∠BAD的度數(shù)是多少時,⊿ADE能成為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個多邊形,你能否用一直線去截這個多邊形,使得到的新多邊形分別滿足下列條件:畫出圖形,把截去的部分打上陰影
新多邊形內(nèi)角和比原多邊形的內(nèi)角和增加了.
新多邊形的內(nèi)角和與原多邊形的內(nèi)角和相等.
新多邊形的內(nèi)角和比原多邊形的內(nèi)角和減少了.
將多邊形只截去一個角,截后形成的多邊形的內(nèi)角和為,求原多邊形的邊數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備從甲乙兩位選手中選擇一位選手代表學(xué)校參加所在地區(qū)的漢字聽寫大賽,學(xué)校對兩位選手從表達(dá)能力、閱讀理解、綜合素質(zhì)和漢字聽寫四個方面做了測試,他們各自的成績(百分制)如表:
選手 | 表達(dá)能力 | 閱讀理解 | 綜合素質(zhì) | 漢字聽寫 |
甲 | 85 | 78 | 85 | 73 |
乙 | 73 | 80 | 82 | 83 |
(1)由表中成績已算得甲的平均成績?yōu)?/span>80.25,請計算乙的平均成績,從他們的這一成績看,應(yīng)選派誰;
(2)如果表達(dá)能力、閱讀理解、綜合素質(zhì)和漢字聽寫分別賦予它們2、1、3和4的權(quán),請分別計算兩名選手的平均成績,從他們的這一成績看,應(yīng)選派誰.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】養(yǎng)成良好的早鍛煉習(xí)慣,對學(xué)生的學(xué)習(xí)和生活非常有益某中學(xué)為了了解七年級學(xué)生的早鍛煉情況,校政教處在七年級隨機(jī)抽取了部分學(xué)生,并對這些學(xué)生通常情況下一天的早鍛煉時間分鐘進(jìn)行了調(diào)查現(xiàn)把調(diào)查結(jié)果分為A,B,C,D四組,如下表所示;同時,將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計圖.
組別 | 早鍛煉時間 |
A | |
B | |
C | |
D |
請根據(jù)以上提供的信息,解答下列問題:
扇形統(tǒng)計圖中D所在扇形的圓心角度數(shù)為______;
補全頻數(shù)分布直方圖;
已知該校七年級共有1200名學(xué)生,請你估計這個年級學(xué)生中有多少人一天早鍛煉的時間不少于20分鐘.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com