如圖,正方形ABCO的邊長為,以O為原點建立平面直角坐標系,點A在x軸的負半軸上,點C在y軸的正半軸上,把正方形ABCO繞點O順時針旋轉α后得到正方形A1B1C1O(α<45°),B1C1交y軸于點D,且D為B1C1的中點,拋物線y=ax2+bx+c過點A1、B1、C1
(1)求tanα的值;
(2)求點A1的坐標,并直接寫出點B1、點C1的坐標;
(3)求拋物線的函數(shù)表達式及其對稱軸;
(4)在拋物線的對稱軸上是否存在點P,使△PB1C1為直角三角形?若存在,直接寫出所有滿足條件的點P的坐標;若不存在,請說明理由.

【答案】分析:(1)根據(jù)旋轉的知識可知:四邊形A1B1C1O為正方形,∴OC1=B1C1,∠OC1B1=90°,∠C1OD=∠AOA1=α,又∵D是B1C1的中點,∴,∴在Rt△C1OD中,tanα=.∴tanα的值是;
(2)根據(jù)三角函數(shù)與勾股定理即可求得點A1的坐標,并直接寫出點B1、點C1的坐標;要注意方程思想的應用;
(3)將點A1,B1,C1的坐標代入解析式,利用方程組即可求得解析式,再求得對稱軸;
(4)一種是與線段B1C1垂直的直線:分別過點B1、C1;一種是根據(jù)直徑所對的圓周角是直角求得,以線段B1C1為直徑作圓,與對稱軸的交點即是所求點.
解答:解:(1)∵四邊形A1B1C1O為正方形,
∴OC1=B1C1,∠OC1B1=90度.
又∵D是B1C1的中點,

∵由旋轉性質可知,∠C1OD=∠AOA1=α,
∴在Rt△C1OD中,tanα=
∴tanα的值是.(2分)

(2)過點A1作A1E⊥x軸,垂足為點E.
在Rt△A1EO中,tanα=,

設A1E=k,則OE=2k,在Rt△A1EO中,
根據(jù)勾股定理,得A1E2+OE2=OA12

解得k1=-1(舍),k2=1.
∴A1E=1,OE=2.
又∵點A1在第二象限,
∴點A1的坐標為(-2,1).(4分)
直接寫出點B1的坐標為(-1,3),點C1的坐標為(1,2).(6分)

(3)∵拋物線y=ax2+bx+c過點A1,B1,C1

解得
∴拋物線的函數(shù)表達式為.(8分)
將其配方,得
∴拋物線的對稱軸是直線.(9分)

(4)存在點P,使△PB1C1為直角三角形.(10分)
滿足條件的點P共有4個:,.(14分)
點評:此題屬于中考中的壓軸題,難度較大,知識點考查的較多而且聯(lián)系密切,需要學生認真審題.此題考查了二次函數(shù)與一次函數(shù),三角形、四邊形的綜合知識,解題的關鍵是要注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,正方形ABCO放在平面直角坐標系中,其中點O為坐標原點,A、C兩點分別在x軸的負半軸和y軸的正半軸上,點B的坐標為(-4,4).已知點E、點F分別從A、點B同時出發(fā),點E以每秒2個單位長度的速度在線段AB上來回運動.點F沿B→C→0方向,以每秒1個單位長度的速度向點O運動,當點F到達點O時,E、F兩點都停止運動.在E、F的運動過程中,存在某個時刻,使得△OEF的面積為6.那么點E的坐標為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,正方形ABCO的邊長為4,D為AB上一點,且BD=3,以點C為中心,把△CBD順時針旋轉90°,得到△CB1D1
(1)直接寫出點D1的坐標;
(2)求點D旋轉到點D1所經過的路線長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,正方形ABCO的邊長是2,E是BC中點,則E點的坐標是
 
,直線AE的解析式是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCO的邊長為
5
,以O為原點建立平面直角坐標系,點A在x軸的負半軸上,點C在y軸的正半軸上,把正方形ABCO繞點O順時針旋轉α后得到正方形A1B1C1O(α<45°),精英家教網B1C1交y軸于點D,且D為B1C1的中點,拋物線y=ax2+bx+c過點A1、B1、C1
(1)求tanα的值;
(2)求點A1的坐標,并直接寫出點B1、點C1的坐標;
(3)求拋物線的函數(shù)表達式及其對稱軸;
(4)在拋物線的對稱軸上是否存在點P,使△PB1C1為直角三角形?若存在,直接寫出所有滿足條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCO的邊長為
5
,O為原點,BC交y軸于點D,且D為BC邊的中點,拋物線y=a精英家教網x2+bx+c經過B、C且與y軸的交點為E(0,
10
3
)

(1)求點C的坐標,并直接寫出點A、B的坐標;
(2)求拋物線的解析式及對稱軸;
(3)探索在拋物線的對稱軸上是否存在點P,使△PBC為直角三角形?若存在,直接寫出所有滿足條件的P點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案