(2006•河南)如圖,在平面直角坐標(biāo)系中,直線y=-x+4分別交x軸、y軸于A、B兩點(diǎn).
(1)求兩點(diǎn)的坐標(biāo);
(2)設(shè)是直線AB上一動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)A不重合),設(shè)⊙P始終和x軸相切,和直線AB相交于C、D兩點(diǎn)(點(diǎn)C的橫坐標(biāo)小于點(diǎn)D的橫坐標(biāo))設(shè)P點(diǎn)的橫坐標(biāo)為m,試用含有m的代數(shù)式表示點(diǎn)C的橫坐標(biāo);
(3)在(2)的條件下,若點(diǎn)C在線段AB上,求m為何值時(shí),△BOC為等腰三角形?

【答案】分析:(1)因?yàn)橹本y=-x+4分別交x軸、y軸于A、B兩點(diǎn),所以分別令x=0、y=0,即可求出A、B的坐標(biāo);
(2)設(shè)點(diǎn)C的橫坐標(biāo)為n.由(1)知AB==5,所以sin∠OBA=,要求點(diǎn)C的橫坐標(biāo),可過C作CE⊥x軸于E,過P作PG⊥x軸于G,PF⊥CE于F,則∠FCP=∠OBA,PF=m-n.
①若m<3時(shí),因?yàn)镻點(diǎn)的橫坐標(biāo)為m,P在直線y=-x+4上,所以PC=PG=-m+4,利用三角函數(shù)可得PF=PC•sin∠FCP=PC•sin∠OBA,即可得到關(guān)于m、m的關(guān)系式,整理即可;
②當(dāng)m>3時(shí),P在x軸的下方,所以PC=PG=,PF=PC•sin∠FCP=PC•sin∠OBA,整理即可得到另一個(gè)m、n的關(guān)系式;
(3)當(dāng)點(diǎn)C在線段AB上時(shí),由(2)知,C點(diǎn)的橫坐標(biāo)n=m-,因?yàn)椤鰾OC為等腰三角形,所以需要分情況討論:
①當(dāng)CB=CO時(shí),因?yàn)椤鱋BA是直角三角形,∠BOA=90°,所以此時(shí)C為AB的中點(diǎn),C點(diǎn)的橫坐標(biāo)為,即n=,即,解之即可;
②當(dāng)CB=OB=4時(shí),因?yàn)锳B=5,可得AC=AB-CB=1,利用三角函數(shù)可得AE=AC•cos∠OAB=,又因OE+AE=OA,就可得到關(guān)于m的方程,解之即可;
③當(dāng)OC=OB時(shí),因?yàn)镺B>OA,所以C在線段BA的延長(zhǎng)線上,即在線段AB上不存在點(diǎn)C,使OC=OB.
解答:解:(1)當(dāng)x=0時(shí),y=4;當(dāng)y=0時(shí),-x+4=0,x=3.
∴A(3,0),B(0,4).(2分)

(2)設(shè)點(diǎn)C的橫坐標(biāo)為n.由(1)知AB==5,
∴sin∠OBA=
過C作CE⊥x軸于E,過P作PG⊥x軸于G,PF⊥CE于F,
則∠FCP=∠OBA,PF=m-n.
①當(dāng)m<3時(shí),∵PC=PG=-m+4,
∴PF=PC•sin∠FCP=PC•sin∠OBA,
∴m-n=(-m+4)×
解得n=m-.(5分)
②當(dāng)m>3時(shí),PC=PG=,PF=PC•sin∠FCP=PC•sin∠OBA,
∴m-n=(m-4)×
解得n=m+.(7分)

(3)當(dāng)點(diǎn)C在線段AB上時(shí),由(2)知,C點(diǎn)的橫坐標(biāo)n=m-,
以下兩種情況△BOC為等腰三角形.
①當(dāng)CB=CO時(shí),
∵△OBA是直角三角形,∠BOA=90度.
∴此時(shí)C為AB的中點(diǎn),
∴C點(diǎn)的橫坐標(biāo)為
,解得m=.(9分)
②當(dāng)CB=OB時(shí),
∵AB=5,
∴AC=AB-CB=1,
∴AE=AC•cos∠OAB=
∵OE+AE=OA,
,解得m=
∵OB>OA,
∴在線段AB上不存在點(diǎn)C,使OC=OB.
所以,當(dāng)m=或m=時(shí),△BOC為等腰三角形.(11分)
點(diǎn)評(píng):本題的解決需要用到分類討論、數(shù)形結(jié)合、方程和轉(zhuǎn)化等數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2006•河南)如圖,∠AOB=45°,過OA上到點(diǎn)O的距離分別為1,2,3,4,5 …的點(diǎn)作OA的垂線與OB相交,再按一定規(guī)律標(biāo)出一組如圖所示的黑色梯形.設(shè)前n個(gè)黑色梯形的面積和為Sn
n 1 2 3 …
 Sn    …
(1)請(qǐng)完成上面的表格;
(2)已知Sn與n之間滿足一個(gè)二次函數(shù)關(guān)系,試求出這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年河南省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•河南)如圖,∠AOB=45°,過OA上到點(diǎn)O的距離分別為1,2,3,4,5 …的點(diǎn)作OA的垂線與OB相交,再按一定規(guī)律標(biāo)出一組如圖所示的黑色梯形.設(shè)前n個(gè)黑色梯形的面積和為Sn
n 1 2 3 …
 Sn    …
(1)請(qǐng)完成上面的表格;
(2)已知Sn與n之間滿足一個(gè)二次函數(shù)關(guān)系,試求出這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年河南省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•河南)如圖△ABC中,∠ACB=90度,AC=2,BC=3.D是BC邊上一點(diǎn),直線DE⊥BC于D,交AB于點(diǎn)E,CF∥AB交直線DE于F.設(shè)CD=x.
(1)當(dāng)x取何值時(shí),四邊形EACF是菱形?請(qǐng)說(shuō)明理由;
(2)當(dāng)x取何值時(shí),四邊形EACD的面積等于2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年河南省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•河南)如圖(1),用形狀相同、大小不等的三塊直角三角形木板,恰好能拼成如圖(2)所示的四邊形ABCD、若AE=4,CE=3BE,那么這個(gè)四邊形的面積是   

查看答案和解析>>

同步練習(xí)冊(cè)答案