【題目】如圖,等腰梯形MNPQ的上底長為2,腰長為3,一個底角為60°.正方形ABCD的邊長為1,它的一邊AD在MN上,且頂點A與M重合.現(xiàn)將正方形ABCD在梯形的外面沿邊MN、NP、PQ進行翻滾,翻滾到有一個頂點與Q重合即停止?jié)L動.
(1)請在所給的圖中,用尺規(guī)畫出點A在正方形整個翻滾過程中所經(jīng)過的路線圖;
(2)求正方形在整個翻滾過程中點A所經(jīng)過的路線與梯形MNPQ的三邊MN、NP、PQ所圍成圖形的面積S.

【答案】
(1)解:作圖如圖;


(2)解:∵點A繞點D翻滾,然后繞點C翻滾,然后繞點B翻滾,半徑分別為1、 、1,翻轉(zhuǎn)角分別為90°、90°、150°,

∴S=2× +2× +2× +4× ×12

= +π+ π+2

= π+2


【解析】(1)根據(jù)點A繞點D翻滾,然后繞點C翻滾,然后繞點B翻滾,半徑分別為1、 、1,翻轉(zhuǎn)角分別為90°、90°、150°,據(jù)此畫出圓弧即可.(2)根據(jù)總結(jié)的翻轉(zhuǎn)角度和翻轉(zhuǎn)半徑,求出圓弧與梯形的邊長圍成的扇形的面積即可.
【考點精析】利用等腰梯形的性質(zhì)和弧長計算公式對題目進行判斷即可得到答案,需要熟知等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等;若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應用弧長公式進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y= 的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.

(1)求函數(shù)y=kx+b和y= 的表達式;
(2)已知點C(0,5),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=﹣x+7與正比例函數(shù)y= x的圖象交于點A,且與x軸交于點B.
(1)求點A和點B的坐標;
(2)過點A作AC⊥y軸于點C,過點B作直線l∥y軸.動點P從點O出發(fā),以每秒1個單位長的速度,沿O﹣C﹣A的路線向點A運動;同時直線l從點B出發(fā),以相同速度向左平移,在平移過程中,直線l交x軸于點R,交線段BA或線段AO于點Q.當點P到達點A時,點P和直線l都停止運動.在運動過程中,設(shè)動點P運動的時間為t秒.
①當t為何值時,以A、P、R為頂點的三角形的面積為8?
②是否存在以A、P、Q為頂點的三角形是等腰三角形?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】省射擊隊為從甲、乙兩名運動員中選拔一人參加全國比賽,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8


(1)根據(jù)表格中的數(shù)據(jù),計算出甲的平均成績是環(huán),乙的平均成績是環(huán);
(2)分別計算甲、乙六次測試成績的方差;
(3)根據(jù)(1)、(2)計算的結(jié)果,你認為推薦誰參加全國比賽更合適,請說明理由. (計算方差的公式:s2= [ ])

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AB=1,BC= ,以點C為圓心,CB為半徑的弧交CA于點D;以點A為圓心,AD為半徑的弧交AB于點E.
(1)求AE的長度;
(2)分別以點A、E為圓心,AB長為半徑畫弧,兩弧交于點F(F與C在AB兩側(cè)),連接AF、EF,設(shè)EF交弧DE所在的圓于點G,連接AG,試猜想∠EAG的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面內(nèi)4條直線l1、l2、l3、l4是一組平行線,相鄰2條平行線的距離都是1個單位長度,正方形ABCD的4個頂點A、B、C、D都在這些平行線上,其中點A、C分別在直線l1、l4上,該正方形的面積是平方單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明從家騎自行車出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時,他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設(shè)他們出發(fā)后經(jīng)過t min時,小明與家之間的距離為s1 m,小明爸爸與家之間的距離為s2 m,圖中折線OABD、線段EF分別表示s1、s2與t之間的函數(shù)關(guān)系的圖象.
(1)求s2與t之間的函數(shù)關(guān)系式;
(2)小明從家出發(fā),經(jīng)過多長時間在返回途中追上爸爸?這時他們距離家還有多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三個半圓依次相外切,它們的圓心都在x軸上,并與直線y= x相切.設(shè)三個半圓的半徑依次為r1、r2、r3 , 則當r1=1時,r3=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,二次函數(shù)y1=(x﹣2)(x﹣4)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),其對稱軸l與x軸交于點C,它的頂點為點D.

(1)寫出點D的坐標
(2)點P在對稱軸l上,位于點C上方,且CP=2CD,以P為頂點的二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點A.
試說明二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點B;
(3)點R在二次函數(shù)y1=(x﹣2)(x﹣4)的圖象上,到x軸的距離為d,當點R的坐標為時,二次函數(shù)y2=ax2+bx+c(a≠0)的圖象上有且只有三個點到x軸的距離等于2d;
(4)如圖2,已知0<m<2,過點M(0,m)作x軸的平行線,分別交二次函數(shù)y1=(x﹣2)(x﹣4)、y2=ax2+bx+c(a≠0)的圖象于點E、F、G、H(點E、G在對稱軸l左側(cè)),過點H作x軸的垂線,垂足為點N,交二次函數(shù)y1=(x﹣2)(x﹣4)的圖象于點Q,若△GHN∽△EHQ,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案