如圖,已知Rt△ABC的周長(zhǎng)為8,將△ABC的斜邊放在定直線L上,按順時(shí)針的方向在直線上轉(zhuǎn)動(dòng)兩次,使它轉(zhuǎn)到△A2B2C2,則AA2=________.

8
分析:根據(jù)旋轉(zhuǎn)性質(zhì)得出△ABC≌△A1B1C1≌△A2B2C2,根據(jù)全等三角形性質(zhì)得出BC=B1C1,A2B2=AB=A1B1,求出AA2=AC+B1C1+A2B2=AC+BC+AB,代入求出即可.
解答:∵△ABC旋轉(zhuǎn)第一次得到△A1B1C1,旋轉(zhuǎn)第二次得到△A2B2C2,
∴△ABC≌△A1B1C1≌△A2B2C2,
∴BC=B1C1,A2B2=AB=A1B1
∴AA2=AC+B1C1+A2B2=AC+BC+AB,
∵△ABC的周長(zhǎng)是8,
∴AC+BC+AB=8,
∴AA2=AC+BC+AB=8,
故答案為:8.
點(diǎn)評(píng):本題考查了全等三角形的性質(zhì)和判定,旋轉(zhuǎn)的性質(zhì),注意:旋轉(zhuǎn)前后的圖形全等,全等三角形的對(duì)應(yīng)邊相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點(diǎn)D,BD的垂直平分線分別交AB,BC于點(diǎn)E、F,CD=CG.
(1)請(qǐng)以圖中的點(diǎn)為頂點(diǎn)(不增加其他的點(diǎn))分別構(gòu)造兩個(gè)菱形和兩個(gè)等腰梯形.那么,構(gòu)成菱形的四個(gè)頂點(diǎn)是
B,E,D,F(xiàn)
E,D,C,G
;構(gòu)成等腰梯形的四個(gè)頂點(diǎn)是
B,E,D,C
E,D,G,F(xiàn)
;
(2)請(qǐng)你各選擇其中一個(gè)圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過(guò)點(diǎn)B作弦BF交AD于點(diǎn)精英家教網(wǎng)E,交⊙O于點(diǎn)F,且AE=BE.
(1)求證:
AB
=
AF
;
(2)若BE•EF=32,AD=6,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長(zhǎng)線上一點(diǎn),PE⊥AB交BA延長(zhǎng)線于E,PF⊥AC交AC延長(zhǎng)線于F,D為BC中點(diǎn),連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過(guò)點(diǎn)A做AE⊥AB,且AE=15,連接BE交AC于點(diǎn)P.
(1)求PA的長(zhǎng);
(2)以點(diǎn)A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個(gè)單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習(xí)冊(cè)答案