如圖,四邊形ABCD是平行四邊形,AB=2,以邊AB為直徑的⊙O經過點D,且∠DAB=45°.
 
(1)試判斷CD與⊙O的位置關系,并說明理由;
(2)若以C為圓心的⊙C與⊙O 相切,求⊙C的半徑.
(1)直線CD與⊙O相切;(2)-1或+1

試題分析:(1)連接OD,根據平行四邊形的性質可得AB//CD,即得∠DAB+∠ADC=180°,從而可以求得∠ADC的度數(shù),再根據圓的基本性質求解即可;
(2)作CE⊥OB,交OB的延長線于點E,連接OC,根據平行四邊形的性質可得AD//BC,即得∠CBE=∠DAB=45°,則可得BE=CE=1,在Rt△OCE中,根據勾股定理可求得OC的長,即可求得結果.
(1)直線CD與⊙O相切.
連接OD
     
∵四邊形ABCD是平行四邊形,
∴AB//CD.
∴∠DAB+∠ADC=180°.
∵∠DAB=45°,
∴∠ADC=135°.
∵OA=OD,
∴∠ODA=∠DAO=45°.
∴∠ODC=∠ADC-∠ODA=90°
∴OD⊥CD,
∵OD為⊙O半徑,
∴直線CD與⊙O相切;
(2)作CE⊥OB,交OB的延長線于點E,連接OC
 
∵四邊形ABCD是平行四邊形,
∴AD//BC.
∴∠CBE=∠DAB=45°.
∴BE=CE=1.
在Rt△OCE中,OC==
∵⊙C與⊙O 相切,
∴⊙C的半徑為-1或+1.
點評:此類問題是初中數(shù)學的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

△OAB是以正多邊形相鄰的兩個頂點A、B與它的中心O為頂點的三角形。若△OAB的一個內角為70°,則該正多邊形的邊數(shù)為       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,E,F(xiàn)是正方形ABCD的邊AD上兩個動點,滿足AE=DF.連接CF交BD于G,連接BE交AG于點H.若正方形的邊長為2,則線段DH長度的最小值是          

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如果一個n邊形的每個內角都為150°,那么n=       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

以邊長為的正方形的中心為端點,引兩條相互垂直的射線,分別與正方形的兩鄰邊交于、兩點,則線段的最小值是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖下列三個條件:①AB∥CD,②∠B=∠C.③∠E=∠F.從中任選兩個作為條件,另一個作為結論,編一道數(shù)學題,并說明理由。

已知:_______________________________
結論:_______________________________
理由:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,平行四邊形ABCD中,E、F分別是邊AB、CD的中點.

(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,等腰梯形 ABCD中,AB∥DC,BD平分∠ABC,∠DAB=60°,若梯形周長為40cm,則AD=      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是邊長為a的正方形,點G,E分別是邊AB,BC的中點,∠AEF=90o,且EF交正方形外角的平分線CF于點F.

(1)證明:△AGE≌△ECF;
(2)求△AEF的面積.

查看答案和解析>>

同步練習冊答案