如圖,點D,E,F(xiàn)分別是△ABC(AB>AC)各邊的中點,下列說法中,錯誤的是( )

A.AD平分∠BAC
B.EF=BC
C.EF與AD互相平分
D.△DFE是△ABC的位似圖形
【答案】分析:根據(jù)中位線定理和位似圖形的判定求解.
解答:解:A、因為AB>AC,所以中線AD不平分∠BAC,故錯誤;
B、根據(jù)中位線定理,EF=BC.故正確;
C、根據(jù)中位線定理,AF∥ED,AE∥FD,四邊形AEDF為平行四邊形,對角線EF與AD互相平分.故正確;
D、因為△DFE和△ABC的各邊對應成比例,為1:2,而且每組對應點所在的直線都經(jīng)過同一個點,對應邊互相平行,是位似圖形.
故選A.
點評:解答此題,要熟練掌握中位線定理,并靈活運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點D,E,F(xiàn)分別是△ABC(AB>AC)各邊的中點,下列說法中,錯誤的是(  )
A、EF與AD互相平分
B、EF=
1
2
BC
C、AD平分∠BAC
D、△DEF∽△ACB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點D,E,F(xiàn)分別是△ABC(AB>AC)各邊的中點,下列說法中,錯誤的是( 。
A、AD平分∠BAC
B、EF=
1
2
BC
C、EF與AD互相平分
D、△DFE是△ABC的位似圖形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖,點D、E、F分別是△ABC的邊AB、BC、AC的中點,連接DE、EF,要使四邊形ADEF為正方形,還需增加條件:
△ABC為等腰直角三角形,且AB=AC,∠A=90°(此題答案不唯一).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點D,E,F(xiàn)分別是△ABC的三邊AB,AC,BC上的中點,如果△ABC的面積是18cm2,則△DBF的面積是
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點D、E、F分別是△ABC三邊AB、BC、AC的中點,則△DEF的周長是△ABC周長的(  )

查看答案和解析>>

同步練習冊答案