已知如圖,矩形ABCD的周長為28,AB=6,對角線AC的垂直平分線分別交AD、BC于E、F,連接AF、精英家教網CE、EF,且EF與AC相交于點O.
(1)求AC的長;
(2)求證:四邊形AECF是菱形;
(3)求S△ABF與S△AEF的比值.
分析:(1)矩形ABCD的周長為28,AB=6,則可求得BC的值,再根據(jù)勾股定理求得AC的值;
(2)要證四邊形AFCE是菱形,只需通過定義證明四邊相等即可.此題實際是對判定菱形的方法“對角形垂直平分的四邊形為菱形”的證明;
(3)因為AE=FC,AO=CO,OE=OF,則可根據(jù)SSS證明△AOE≌△COF,所以有S△AEF=S△ACF,再分別求得S△ABF與S△AEF的面積即可得到其比值.
解答:解:(1)∵ABCD是矩形
∴AB=DC,AD=BC
∵ABCD的周長為28,AB=6
∴AB+DC+AD+BC=28
∴BC=8
∴AC=
AB2+BC2
=
36+64
=10;

(2)∵四邊形ABCD是矩形
∴AD∥BC
∴∠OAE=∠OCF
∵EF垂直平分AC
∴AO=CO,∠AOE=∠COF=90°
∴△AOE≌△COF
∴OE=OF
∴四邊形AFEC是平行四邊形
又∵EF⊥AC
∴四邊形AFEC是菱形;

(3)∵AE=FC,AO=CO,OE=OF
∴△AOE≌△COF
∴S△AEF=S△ACF
∵S△ABF=3BF,S△AEF=3FC
∴S△ABF:S△AEF=BF:FC.
設FC=x,則AF=x,BF=8-x
在Rt△ABF中,由勾股定理
62+(8-x)2=x2
解得x=
25
4

∴BF=8-x=
7
4

∴S△ABF:S△AEF=BF:FC=7:25
點評:此題主要考查了矩形的性質、線段的垂直平分線性質、菱形的判定以及勾股定理等知識的綜合應用,有利于學生思維能力的訓練.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•通州區(qū)一模)已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉α度(0°<α<90°),得到△BDE,點B、A、E恰好在同一條直線上,連接CE.
(1)則四邊形DBCE是
形(填寫:平行四邊形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=
3
,請你求出四邊形DBCE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉α度(0°<α<90°),得到△BDE,點B、A、E恰好在同一條直線上,連結CE.

(1)則四邊形DBCE是_______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)

(2)若AB=AC=1,BC=,請你求出四邊形DBCE的面積.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆北京市通州區(qū)九年級中考一模數(shù)學卷(帶解析) 題型:解答題

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉α度(0°<α<90°),得到△BDE,點B、AE恰好在同一條直線上,連結CE.

(1)則四邊形DBCE是_______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=,請你求出四邊形DBCE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年北京市通州區(qū)九年級中考一模數(shù)學卷(解析版) 題型:解答題

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉α度(0°<α<90°),得到△BDE,點B、A、E恰好在同一條直線上,連結CE.

(1)則四邊形DBCE是_______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)

(2)若AB=AC=1,BC=,請你求出四邊形DBCE的面積.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉α度(0°<α<90°),得到△BDE,點B、A、E恰好在同一條直線上,連接CE.
(1)則四邊形DBCE是______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=數(shù)學公式,請你求出四邊形DBCE的面積.

查看答案和解析>>

同步練習冊答案