如圖1,點C將線段AB分成兩部分,如果,那么稱點C為線段AB的黃金分割點.某研究小組在進行課題學(xué)習(xí)時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點(如圖2),則直線CD是△ABC的黃金分割線.你認為對嗎?為什么?
(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組在進一步探究中發(fā)現(xiàn):過點C任作一條直線交AB于點E,再過點D作直線DF∥CE,交AC于點F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請你說明理由.
(4)如圖4,點E是平行四邊形ABCD的邊AB的黃金分割點,過點E作EF∥AD,交DC于點F,顯然直線EF是平行四邊形ABCD的黃金分割線.請你畫一條平行四邊形ABCD的黃金分割線,使它不經(jīng)過平行四邊形ABCD各邊黃金分割點.

【答案】分析:(1)若點D為AB邊上的黃金分割點,則有.如果設(shè)△ABC的邊AB上的高為h,根據(jù)三角形的面積公式,易得,,即有,根據(jù)圖形的黃金分割線的定義即可判斷;
(2)由于等底同高的兩個三角形的面積相等,所以三角形任意一邊上的中線都將三角形分成面積相等的兩部分,即有,則,從而可知三角形的中線不可能是該三角形的黃金分割線;
(3)由于直線CD是△ABC的黃金分割線,所以.要想說明直線EF也是△ABC的黃金分割線,只需證明,即證S△ADC=S△AEF,S△BDC=S四邊形BEFC即可.因為DF∥CE,所以△DFC和△DFE的公共邊DF上的高也相等,所以有S△DFC=S△DFE,所以S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四邊形BEFC
(4)根據(jù)黃金分割線的定義即可作出.本題答案不唯一,作法有無數(shù)種.
解答:解:(1)直線CD是△ABC的黃金分割線.理由如下:
設(shè)△ABC的邊AB上的高為h.
,,
,
又∵點D為邊AB的黃金分割點,
,

故直線CD是△ABC的黃金分割線.

(2)∵三角形的中線將三角形分成面積相等的兩部分,
,即
故三角形的中線不可能是該三角形的黃金分割線.

(3)∵DF∥CE,
∴△DFC和△DFE的公共邊DF上的高也相等,
∴S△DFC=S△DFE,
∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四邊形BEFC
又∵,

因此,直線EF也是△ABC的黃金分割線.(7分)

(4)畫法不惟一,現(xiàn)提供兩種畫法;
畫法一:如答圖1,取EF的中點G,再過點G作一條直線分別交AB,DC于M,N點,則直線MN就是平行四邊形ABCD的黃金分割線.
畫法二:如答圖2,在DF上取一點N,連接EN,再過點F作FM∥NE交AB于點M,連接MN,則直線MN就是平行四邊形ABCD的黃金分割線.

(9分)
點評:本題考查學(xué)生的閱讀能力、知識遷移能力、分析問題及解決問題的能力.綜合性較強,有一定難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,點C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點C為線段AB的黃金分割點.
(1)某研究小組在進行課題學(xué)習(xí)時,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.(如圖2)精英家教網(wǎng)
問題.試在圖3的梯形中畫出至少五條黃金分割線,并說明理由.
(2)類似“黃金分割線”得“黃金分割面”定義:截面a將一個體積為V的圖形分成體積為V精英家教網(wǎng)1、V2的兩個圖形,且
V1
V
=
V2
V1
,則稱直線a為該圖形的黃金分割面.
問題:如圖4,長方體ABCD-EFGH中,T是線段AB上的黃金分割點,證明經(jīng)過T點且平行于平面BCGF的截面QRST是長方體的黃金分割面.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,點C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點C為線段AB的黃金分割點.某研究小組在進行課題學(xué)習(xí)時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點(如圖2),則直線CD是△ABC的黃金分割線.你認為對嗎?為什么?
(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組在進一步探究中發(fā)現(xiàn):過點C任作一條直線交AB于點E,再過點D作直線DF∥CE,交AC于點F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請你說明理由.
(4)如圖4,點E是平行四邊形ABCD的邊AB的黃金分割點,過點E作EF∥AD,交DC于點F,顯然直線EF是平行四邊形ABCD的黃金分割線.請你畫一條平行四邊形ABCD的黃金分割線,使它不經(jīng)過平行四邊形ABCD各邊黃金分割點.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黃石)如圖1,點C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點C為線段AB的黃金分割點.某數(shù)學(xué)興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖3,請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對角線AC、BD交于點F,延長AB、DC交于點E,連接EF交梯形上、下底于G、H兩點,請問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,點C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點C為線段AB的黃金分割點.某研究小組在進行課題學(xué)習(xí)時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.

(1)研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點(如圖2),則直線CD是△ABC的黃金分割線.你認為對嗎?為什么?
(2)研究小組在進一步探究中發(fā)現(xiàn):過點C任作一條直線交AB于點E,再過點D作直線DF∥CE,交AC于點F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分10分)如圖1,點C將線段AB分成兩部分,如果AB : AC=AC : BC,那么稱點C為線段的黃金分割點.某研究小組在進行課題學(xué)習(xí)時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1: S2,如果S : S1= S1: S2,,那么稱直線為該圖形的黃金分割線.

(1)研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點(如圖2),則直線CD是△ABC的黃金分割線.你認為對嗎?為什么?

(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?

(3)研究小組探究發(fā)現(xiàn):在(1)中,過點C任作AE交AB于E,再過點D作,交 AC于點F,連接EF(如圖3),則直線EF是△ABC的黃金分割線.請說明理由.

(4)如圖4,點E是ABCD的邊AB的黃金分割點,過點E作,交DC于點F,顯然直線EF是ABCD的黃金分割線.請你再畫一條ABCD的黃金分割線,使它不經(jīng)過ABCD各邊黃金分割點(保留必要的輔助線).

 

查看答案和解析>>

同步練習(xí)冊答案