(本題滿分12分)如圖甲,分別以兩個(gè)彼此相鄰的正方形?OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上).若⊙P過(guò)A、B、E三點(diǎn)(圓心在x軸上),拋物線y=14x2+bx+c經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),正方形CDEF的面積為1.

1.(1)求B點(diǎn)坐標(biāo);

2.(2)求證:ME是⊙P的切線;

3.(3)設(shè)直線AC與拋物線對(duì)稱軸交于N,Q點(diǎn)是此對(duì)稱軸上不與N點(diǎn)重合的一動(dòng)點(diǎn),①求△ACQ周長(zhǎng)的最小值;

②若FQ=t,SACQ=S,直接寫出S與t之間的函數(shù)關(guān)系式.

 

 

1.(1)如圖甲,連接PE、PB,設(shè)PC=n,

∵正方形CDEF的面積為1,

∴CD=CF=1,

根據(jù)圓和正方形的對(duì)稱性知:OP=PC=n,

∴BC=2PC=2n,

∵而PB=PE,

∴PB2=BC2+PC2=4n2+n2=5n2,PE2=PF2+EF2=(n+1)2+1,

∴5n2=(n+1)2+1,

解得:n=1或n=- 12(舍去),

∴BC=OC=2,

∴B點(diǎn)坐標(biāo)為(2,2);

 

2.(2)如圖甲,由(1)知A(0,2),C(2,0),

∵A,C在拋物線上,

\∴{c=214×4+2b+c=0,

解得:{c=2b=-32,

∴拋物線的解析式為:y=14x2- 32x+2= 14(x-3)2-14,

∴拋物線的對(duì)稱軸為x=3,即EF所在直線,

∵C與G關(guān)于直線x=3對(duì)稱,

∴CF=FG=1,

∴MF= 12FG=12,

在Rt△PEF與Rt△EMF中,

∠EFM=∠EFP,

∵FMEF=121=12,EFPF=12,

∴FMEF=EFPF,

∴△PEF∽△EMF,

∴∴∠EPF=∠FEM,

∴∠PEM=∠PEF+∠FEM=∠PEF+∠EPF=90°,

∴ME是⊙P的切線;

 

3.

(3)①如圖乙,延長(zhǎng)AB交拋物線于A′,連CA′交對(duì)稱軸x=3于Q,連AQ,

則有AQ=A′Q,

∴△ACQ周長(zhǎng)的最小值為AC+A′C的長(zhǎng),

∵A與A′關(guān)于直線x=3對(duì)稱,

∴A(0,2),A′(6,2),

∴A′C=(6-2)2+22=25,而AC=22+22=22,

∴△ACQ周長(zhǎng)的最小值為22+2 5;

②當(dāng)Q點(diǎn)在F點(diǎn)上方時(shí),S=t+1,

當(dāng)Q點(diǎn)在線段FN上時(shí),S=1-t,

當(dāng)Q點(diǎn)在N點(diǎn)下方時(shí),S=t-1.

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,,.動(dòng)點(diǎn)M以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過(guò)點(diǎn)M作直線lAD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).

(1)當(dāng)時(shí),求線段的長(zhǎng);

(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;

(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?img width=28 height=43 src="http://thumb.zyjl.cn/pic1/imagenew/czsx/8/199768.png" >是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué) 題型:解答題

(本題滿分12分)如圖,在邊長(zhǎng)為2的正方形ABCD中,PAB的中點(diǎn),Q為邊CD上一動(dòng)點(diǎn),設(shè)DQt(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)MN,過(guò)QQEAB于點(diǎn)E,過(guò)MMFBC于點(diǎn)F
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市徐匯區(qū)中考一模數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

如圖,的頂點(diǎn)A、B在二次函數(shù)的圖像上,又點(diǎn)AB[來(lái)分別在軸和軸上,ABO

1.(1)求此二次函數(shù)的解析式;(4分)

2.

 

 
(2)過(guò)點(diǎn)交上述函數(shù)圖像于點(diǎn),

點(diǎn)在上述函數(shù)圖像上,當(dāng)相似時(shí),求點(diǎn)的坐標(biāo).(8分)

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年高級(jí)中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題

(本題滿分12分)如圖1,拋物線與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),與直線交于A、D兩點(diǎn)。

⑴直接寫出A、C兩點(diǎn)坐標(biāo)和直線AD的解析式;

⑵如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)落在圖1中拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(廣西桂林) 題型:解答題

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,.動(dòng)點(diǎn)M以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過(guò)點(diǎn)M作直線lAD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).

(1)當(dāng)時(shí),求線段的長(zhǎng);

(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;

(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012062023192556339203/SYS201206202322040008469979_ST.files/image007.png">是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案