【題目】如圖,△ABC中,∠BAC=110°,AB的垂直平分線交BC于點D,AC的垂直平分線交BC于點E,BC=10cm.求:
(1)△ADE的周長;
(2)∠DAE的度數(shù).
【答案】(1)10cm;(2)40°
【解析】(1)、根據(jù)中垂線的性質(zhì)得出AD=BD,AE=CE,從而得出△ADE的周長等于BC的長度,得出答案;(2)、根據(jù)中垂線的性質(zhì)得出∠B=∠BAD,∠C=∠EAC,然后根據(jù)三角形內(nèi)角和定理得出∠B+∠C=70°,從而得出∠ADE+∠AED=140°,最后根據(jù)三角形內(nèi)角和定理得出∠DAE的度數(shù).
(1)、∵DF垂直平分AB,EG垂直平分AC,∴AD=BD,AE=EC,
∴△ADE的周長等于10cm;
(2)、∵AD=BD,AE=EC,∴∠B=∠BAD,∠C=∠EAC,∴∠ADE=2∠B,∠AED=2∠C,
而∠B+∠C=70°,∴∠ADE+∠AED=140°,∴∠DAE=40°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一直徑是 米的圓形鐵皮,現(xiàn)從中剪出一個圓周角是90°的最大扇形ABC,則:
(1)AB的長為米;
(2)用該扇形鐵皮圍成一個圓錐,所得圓錐的底面圓的半徑為米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請根據(jù)圖中提供的信息,回答下列問題
(1)一個暖瓶與一個水杯分別是多少元?
(2)甲、乙兩家商場同時出售同樣的暖瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定: 這兩種商品都打九折;乙商場規(guī)定:買一個暖瓶贈送一個水杯。若某單位想要買4個暖瓶和15個水杯,請問選擇哪家商場購買更合算,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某裝修工程,甲、乙兩人可以合作完成,若甲、乙兩人合作4天后,再由乙獨作12天可以完成,已知甲獨作每天需要費用580元.乙獨作每天需費用280元.但乙單獨完成的天數(shù)是甲單獨完成天數(shù)的2倍.
(1)甲、乙兩人單獨作這項工程各需多少天?
(2)如果工期要求不超過18天完成,應(yīng)如何安排甲乙兩人的工期使這項工程比較省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個三角形為“有趣三角形”,這條中線稱為“有趣中線”。如圖,在三角形ABC中,∠C=90°,較短的一條直角邊BC=1,且三角形ABC是“有趣三角形”,求三角形ABC的“有趣中線”的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
“若滿足,求的值”
解:設(shè),則,
所以
(解決問題)
(1)若滿足,求的值.
(2)若滿足,求的值.
(3)如圖,正方形的邊長為,,長方形的面積是500,四邊形和都是正方形,是長方形,求圖中陰影部分的面積(結(jié)果必須是一個具體的數(shù)值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料3600kg,乙種原料2410kg,計劃利用這兩種原料生產(chǎn)A,B兩種產(chǎn)品共500件,產(chǎn)品每月均能全部售出.已知生產(chǎn)一件A產(chǎn)品需要甲原料9kg和乙原料3kg;生產(chǎn)一件B種產(chǎn)品需甲種原料4kg和乙種原料8kg.
(1)設(shè)生產(chǎn)x件A種產(chǎn)品,寫出x應(yīng)滿足的不等式組.
(2)問一共有幾種符合要求的生產(chǎn)方案?并列舉出來.
(3)若有兩種銷售定價方案,第一種定價方案可使A產(chǎn)品每件獲得利潤1.15萬元,B產(chǎn)品每件獲得利潤1.25萬元;第二種定價方案可使A和B產(chǎn)品每件都獲得利潤1.2萬元;在上述生產(chǎn)方案中哪種定價方案盈利最多?(請用數(shù)據(jù)說明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)某園林部門決定利用現(xiàn)有的349盆甲種花卉和295盆乙種花卉搭配A、B兩種園藝造型共50個,擺放在迎賓大道兩側(cè).已知搭配一個A種造型需甲種花卉8盆,乙種花卉4盆;搭配一個B種造型需甲種花卉5盆,乙種花卉9盆.
(l)某校2015屆九年級某班課外活動小組承接了這個園藝造型搭配方案的設(shè)計,問符合題意的搭配方案有幾種?請你幫助設(shè)計出來;
(2)若搭配一個A種造型的成本是200元,搭配一個B種造型的成本是360元,試說明(1)中哪種方案成本最低,最低成本是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)(﹣2)﹣1﹣|﹣ |+(3.14﹣π)0+4cos45°
(2)已知x2﹣2x﹣7=0,求(x﹣2)2+(x+3)(x﹣3)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com