【題目】如圖,是二次函數(shù)圖象的一部分,其對(duì)稱軸是,且過(guò)點(diǎn),下列說(shuō)法:;;,是拋物線上兩點(diǎn),則,其中正確的有  

A. 1個(gè)

B. 2個(gè)

C. 3個(gè)

D. 4個(gè)

【答案】D

【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.

解:①由對(duì)稱軸可知:<0,

ab>0,

由拋物線與y軸的交點(diǎn)可知:c<0,

abc<0,故①正確;

②由圖象可知:=-1,

b=2a,

2a-b=0,故②正確;

(-3,0)關(guān)于直線x=-1的對(duì)稱點(diǎn)為(1,0),

∴令x=1,y=a+b+c=0,

c=-3a,

a>0,

8a+c=5a>0,故④正確;

(-5,y1)關(guān)于直線x=-1的對(duì)稱點(diǎn)(3,y1),

∴若(-5,y1),(3,y2)是拋物線上兩點(diǎn),則y1=y2,

故④正確;

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的兩條角平分線BD、CE交于O,且A=60°,則下列結(jié)論中不正確的是( )

A.BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,,,,點(diǎn)從點(diǎn)出發(fā),以每秒單位的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)同時(shí)出發(fā),以每秒單位的速度向點(diǎn)運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.

1)當(dāng)時(shí),若以點(diǎn),和點(diǎn),中的兩個(gè)點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,且線段為平行四邊形的一邊,求的值.

2)若以點(diǎn)和點(diǎn),,中的兩個(gè)點(diǎn)為頂點(diǎn)的四邊形為菱形,且線段為菱形的一條對(duì)角線,請(qǐng)直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,以△ABC的一邊BC為直徑的O分別交AB、ACD、E,下面判斷中:當(dāng)△ABC為等邊三角形時(shí),△ODE是等邊三角形;當(dāng)△ODE是等邊三角形,△ABC為等邊三角形;當(dāng)∠A=45°時(shí),△ODE是直角三角形;當(dāng)△ODE是直角三角形時(shí),∠A=45°.正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)△ABC(頂點(diǎn)在網(wǎng)格線的交點(diǎn)上)的頂點(diǎn)A、C的坐標(biāo)分別為A(﹣3,4)C(0,2)

(1)請(qǐng)?jiān)诰W(wǎng)格所在的平面內(nèi)建立平面直角坐標(biāo)系,并寫(xiě)出點(diǎn)B的坐標(biāo);

(2)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱的圖形△A1B1C1;

(3)求△ABC的面積;

(4)在x軸上存在一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象開(kāi)口向上,圖象經(jīng)過(guò)點(diǎn)(-1,2)和(1,0),且與y

軸相交于負(fù)半軸。給出四個(gè)結(jié)論:①;②;③;④ ,其中正確結(jié)論的序

號(hào)是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售某種品牌的手機(jī),每部進(jìn)貨價(jià)為2500.市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8部;而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4.

(1)當(dāng)售價(jià)為2800元時(shí),這種手機(jī)平均每天的銷售利潤(rùn)達(dá)到多少元?

(2)若設(shè)每部手機(jī)降低x,每天的銷售利潤(rùn)為y,試寫(xiě)出yx之間的函數(shù)關(guān)系式.

(3)商場(chǎng)要想獲得最大利潤(rùn),每部手機(jī)的售價(jià)應(yīng)訂為為多少元?此時(shí)的最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程x2-(k+2)x+k-1=0

(1)若方程的一個(gè)根為 -1,求的值和方程的另一個(gè)根;

(2)求證:不論取何值,該方程都有兩個(gè)不相等的實(shí)數(shù)根

查看答案和解析>>

同步練習(xí)冊(cè)答案