已知實(shí)數(shù)a,b,c滿足a2+ab+ac<0,則關(guān)于x的方程ax2+bx+c=0


  1. A.
    有兩個(gè)不相等的實(shí)數(shù)根
  2. B.
    有兩個(gè)相等的實(shí)數(shù)根
  3. C.
    沒有實(shí)數(shù)根
  4. D.
    不能確定
A
分析:欲判斷一元二次方程ax2+bx+c=0根的情況,就要判斷△與0的關(guān)系,與a2+ab+ac<0聯(lián)立就可判斷△與0的關(guān)系,進(jìn)而判斷出方程根的情況.設(shè)法把“a2+ab+ac<0”變?yōu)楹衎2-4ac的不等式后問題即可得解.
解答:由題意得△=b2-4ac
∵a2+ab+ac<0
∴4a2+4ab+4ac<0
∴4a2+4ab<-4ac
∴4a2+4ab+b2<b2-4ac
∴b2-4ac>4a2+4ab+b2
∴△>(2a+b)2
∴△>0
即一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.
故選A
點(diǎn)評(píng):本題考查了根的判別式的知識(shí),判斷一元二次方程根的情況就是判斷判別式△與0的大小關(guān)系,正確對(duì)已知條件進(jìn)行變形,是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知a,b,c為實(shí)數(shù),且滿足下式:a2+b2+c2=1,①,a(
1
b
+
1
c
)+b(
1
c
+
1
a
)+c(
1
a
+
1
b
)=-3
;②求a+b+c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•菏澤)(1)已知m是方程x2-x-2=0的一個(gè)實(shí)數(shù)根,求代數(shù)式(m2-m)(m-
2
m
+1)
的值.
(2)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x的圖象與反比例函數(shù)y=
k
x
的圖象交于A、B兩點(diǎn).
①根據(jù)圖象求k的值;
②點(diǎn)P在y軸上,且滿足以點(diǎn)A、B、P為頂點(diǎn)的三角形是直角三角形,試寫出點(diǎn)P所有可能的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分為6分)已知關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根x1,x2,求k的取值范圍.

解答過程:根據(jù)題意,得

      =

=>0

k

所以當(dāng)k時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.

當(dāng)你讀了上面的解答過程后,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并寫出正確的答案.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知m是方程x2﹣x﹣2=0的一個(gè)實(shí)數(shù)根,求代數(shù)式的值.

(2)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn).

①根據(jù)圖象求k的值;

②點(diǎn)P在y軸上,且滿足以點(diǎn)A、B、P為頂點(diǎn)的三角形是直角三角形,試寫出點(diǎn)P所有可能的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年山東省菏澤市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)已知m是方程x2-x-2=0的一個(gè)實(shí)數(shù)根,求代數(shù)式的值.
(2)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn).
①根據(jù)圖象求k的值;
②點(diǎn)P在y軸上,且滿足以點(diǎn)A、B、P為頂點(diǎn)的三角形是直角三角形,試寫出點(diǎn)P所有可能的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案