【題目】甲、乙兩家超市同價(jià)銷售同一款可拆分式驅(qū)蚊器,1套驅(qū)蚊器由1個(gè)加熱器和1瓶電熱蚊香液組成.電熱蚊香液作為易耗品可單獨(dú)購(gòu)買(mǎi),1瓶電熱蚊香液的售價(jià)是1套驅(qū)蚊器的.已知電熱蚊香液的利潤(rùn)率為20%,整套驅(qū)蚊器的利潤(rùn)率為25%.張阿姨從甲超市買(mǎi)了1套這樣的驅(qū)蚊器,并另外買(mǎi)了4瓶電熱蚊香液,超市從中共獲利10元.
(1)求1套驅(qū)蚊器和1瓶電熱蚊香液的售價(jià);
(2)為了促進(jìn)該款驅(qū)蚊器的銷售,甲超市打8.5折銷售,而乙超市采用的銷售方法是顧客每買(mǎi)1套驅(qū)蚊器送1瓶電熱蚊香液.在這段促銷期間,甲超市銷售2000套驅(qū)蚊器,而乙超市在驅(qū)蚊器銷售上獲得的利潤(rùn)不低于甲超市的1.2倍.問(wèn)乙超市至少銷售多少套驅(qū)蚊器?
【答案】(1)、驅(qū)蚊器售價(jià)30元,電熱蚊香液的售價(jià)6元;(2)、3600
【解析】
試題分析:(1)、設(shè)1套驅(qū)蚊器售價(jià)5x元,1瓶電熱蚊香液的售價(jià)x元,根據(jù)題意列出方程解答即可;
(2)、設(shè)乙超市銷售x套驅(qū)蚊器,根據(jù)乙超市在驅(qū)蚊器銷售上獲得的利潤(rùn)不低于甲超市的1.2倍列出方程解答即可.
試題解析:(1)、設(shè)1套驅(qū)蚊器售價(jià)5x元,1瓶電熱蚊香液的售價(jià)x元;
, 解得x=6,
所以設(shè)1套驅(qū)蚊器售價(jià)30元,1瓶電熱蚊香液的售價(jià)6元.
(2)、設(shè)乙超市銷售x套驅(qū)蚊器. W甲=2000×(30×0.85﹣24)=3000元;
W乙=x×(30﹣24)﹣x×5=x 由題意知W乙≥W甲 解得x≥3600.
乙超市至少銷售3600套驅(qū)蚊器.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,AD為等腰直角△ABC的高,點(diǎn)A和點(diǎn)C分別在正方形DEFG的邊DG和DE上,連接BG,AE.
(1)求證:BG=AE;
(2)將正方形DEFG繞點(diǎn)D旋轉(zhuǎn),當(dāng)線段EG經(jīng)過(guò)點(diǎn)A時(shí),(如圖②所示)
①求證:BG⊥GE;
②設(shè)DG與AB交于點(diǎn)M,若AG:AE=3:4,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,AC,BD是對(duì)角線。將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG。則下列結(jié)論:
①四邊形AEGF是菱形 ②△AED≌△GED
③∠DFG=112.5° ④BC+FG=1.5
其中正確的結(jié)論是( )
A. ①②③④ B. ①②③ C. ①② D. ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E是AC上一點(diǎn),過(guò)點(diǎn)A作AG⊥EB,垂足為G,AG交BD于F,則OE=OF.
(1)請(qǐng)證明0E=OF
(2)解答(1)題后,某同學(xué)產(chǎn)生了如下猜測(cè):對(duì)上述命題,若點(diǎn)E在AC的延長(zhǎng)線上,AG⊥EB,AG交 EB的延長(zhǎng)線于 G,AG的延長(zhǎng)線交DB的延長(zhǎng)線于點(diǎn)F,其他條件不變,則仍有OE=OF.問(wèn):猜測(cè)所得結(jié)論是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,O是AB邊上的一點(diǎn),以O(shè)A為半徑的⊙O與邊BC相切于點(diǎn)E.
(1)若AC=6,BC=10,求⊙O的半徑.
(2)過(guò)點(diǎn)E作弦EF⊥AB于M,連接AF,若∠AFE=2∠ABC,求證:四邊形ACEF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別為E,F,則下列四個(gè)結(jié)論:①AD上任意一點(diǎn)到點(diǎn)C,B的距離相等;②AD上任意一點(diǎn)到AB,AC的距離相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),△AOB為等邊三角形,P是x軸上一個(gè)動(dòng)點(diǎn)(不與原O重合),以線段AP為一邊在其右側(cè)作等邊三角形△APQ.
(1)求點(diǎn)B的坐標(biāo);
(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大。蝗绺淖,請(qǐng)說(shuō)明理由.
(3)連接OQ,當(dāng)OQ∥AB時(shí),求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△A1C1C2的周長(zhǎng)為1,作C1D1⊥A1C2于D1,在C1C2的延長(zhǎng)線上取點(diǎn)C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延長(zhǎng)線上取點(diǎn)C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊△A3C3C4;…且點(diǎn)A1,A2,A3,…都在直線C1C2同側(cè),如此下去,則△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1的周長(zhǎng)和為______.(n≥2,且n為整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)直線y=kx+4經(jīng)過(guò)點(diǎn)(1,2),求不等式kx+4≥0的解集.
(2)x取哪些正整數(shù)時(shí),不等式 x+3>6 與 2x-1<10 都成立?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com