【題目】本題8分如圖,矩形ABCD中,AB=2,BC=5,E、P分別在AD、BC上,且DE=BP=1

(1)BEC的形狀,并說明理由;

(2)判斷四邊形EFPH是什么特殊四邊形?并證明你的判斷。

【答案】1BEC是直角三角形,理由見解析;

2四邊形EFPH為矩形,證明見解析;

【解析】

試題分析:1由矩形性質得出CD=2,根據(jù)勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根據(jù)勾股定理的逆定理求出即可;

2由矩形的性質和平行四邊形的判定,推出平行四邊形DEBP和AECP,推出EHFP,EFHP,推出平行四邊形EFPH,根據(jù)矩形的判定推出即可;

試題解析:1BEC是直角三角形,

理由是:矩形ABCD,

∴∠ADC=ABP=90°,AD=BC=5,AB=CD=2,

由勾股定理得:CE=,

同理BE=2,

CE2+BE2=5+20=25,

BC2=52=25,

BE2+CE2=BC2,

∴∠BEC=90°,

∴△BEC是直角三角形

2四邊形EFPH為矩形,

矩形ABCD,

AD=BC,ADBC,

DE=BP,

四邊形DEBP是平行四邊形,

BEDP,

AD=BC,ADBC,DE=BP,

AE=CP,

四邊形AECP是平行四邊形,

APCE,

四邊形EFPH是平行四邊形,

∵∠BEC=90°,

平行四邊形EFPH是矩形

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,PCD上一點,且APBP分別平分∠DAB和∠CBA.

(1)求∠APB的度數(shù);

(2)如果AD=5 cm,AP=8 cm,求△APB的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)前往B城,在整個行程中,兩車離開A城的距離y與t的對應關系如圖所示:

(1)A、B兩城之間距離是多少千米?
(2)求乙車出發(fā)多長時間追上甲車?
(3)直接寫出甲車出發(fā)多長時間,兩車相距20千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD邊長為3,連接AC,AE平分CAD,交BC的延長線于點E,FAAE,交CB延長線于點F,則EF的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于BF長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF

1)四邊形ABEF ;(選填矩形、菱形、正方形、無法確定)(直接填寫結果)

2AEBF相交于點O,若四邊形ABEF的周長為40BF=10,則AE的長為 ,ABC= °.(直接填寫結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】早晨,小明步行到離家900米的學校去上學,到學校時發(fā)現(xiàn)眼鏡忘在家中,于是他立即按原路步行回家,拿到眼鏡后立即按原路騎自行車返回學校.已知小明步行從學校到家所用的時間比他騎自行車從家到學校所用的時間多10分鐘,小明騎自行車速度是步行速度的3倍.
(1)求小明步行速度(單位:米/分)是多少;
(2)下午放學后,小明騎自行車回到家,然后步行去圖書館,如果小明騎自行車和步行的速度不變,小明步行從家到圖書館的時間不超過騎自行車從學校到家時間的2倍,那么小明家與圖書館之間的路程最多是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】情系災區(qū).5月12日我國四川汶川縣發(fā)生里氏8.0級大地震,地震給四川,甘肅,陜西等地造成巨大人員傷亡和財產損失.災難發(fā)生后,我校師生和全國人民一道,迅速伸出支援的雙手,為災區(qū)人民捐款捐物.為了支援災區(qū)學校災后重建,我校決定象災區(qū)捐助床架60個,課桌凳100套.現(xiàn)計劃租甲、乙兩種貨車共8輛將這些物質運往災區(qū),已知一輛甲貨車可裝床架5個和課桌凳20套,一輛乙貨車可裝床架10個和課桌凳10套.

(1)學校如何安排甲、乙兩種貨車可一次性把這些物資運到災區(qū)?有幾種方案?

(2)若甲種貨車每輛要付運輸費1200元,乙種貨車要付運輸費1000元,則學校應選擇哪種方案,使運輸費最少?最少運費是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調查(每位同學只選最關注的一個),根據(jù)調查結果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:

(1)這次調查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數(shù).
(3)如果要在這5個主題中任選兩個進行調查,根據(jù)(2)中調查結果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABCD的邊AB延長至點E,使ABBE,連接BD,DEEC,DEBC于點O.

(1)求證:△ABD≌△BEC;

(2)若∠BOD2A求證:四邊形BECD是矩形.

查看答案和解析>>

同步練習冊答案