(2009•來賓)在△ABC中,AC=6,BC=8,AB=10,點D、E分別在AB、AC上,且DE將△ABC的周長分成相等的兩部分.設(shè)AE=x,AD=y,△ADE的面積為S.
(1)求出y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求出S關(guān)于x的函數(shù)關(guān)系式;試判斷S是否有最大值,若有,則求出其最大值,并指出此時△ADE的形狀;若沒有,請說明理由.

【答案】分析:(1)根據(jù)DE平分三角形ABC的周長,可得出的條件是AD+AE=BD+BC+CE,可先用x、y表示出CE、BD的長,然后根據(jù)上面得出的等量關(guān)系來求出yx的函數(shù)關(guān)系式.然后根據(jù)CE、AE的長均不為負數(shù)來求出x的取值范圍.
(2)求三角形ADE的面積,需要知道底邊和高的長,已知了底邊AE=x,關(guān)鍵是求出底邊AE上的高,過D作DF⊥AE于F,可在直角三角形ADF中,根據(jù)∠A的正弦值,用AD的長表示出DF的值.然后根據(jù)三角形的面積公式可得出關(guān)于S、x、y的函數(shù)關(guān)系式,將(1)得出的關(guān)于x,y的函數(shù)關(guān)系式代入剛剛得出的函數(shù)式中即可得出關(guān)于S、x的函數(shù)關(guān)系式.
然后可根據(jù)函數(shù)的性質(zhì)得出S的最大值以及對應(yīng)的x的取值,有了x的值,即可通過此時AE、AD的長來判斷出三角形ADE的形狀.
解答:解:(1)∵DE平分△ABC的周長,
∴AD+AE==12,即y+x=12,
∴y關(guān)于x的函數(shù)關(guān)系式為:y=12-x(2≤x≤6).

(2)過點D作DF⊥AC,垂足為F,
∵62+82=102,即AC2+BC2=AB2
∴△ABC是直角三角形,∠ACB=90°
∴sin∠A=,即
∴DF=
∴S=•AE•DF=•x•=-x2+x
=-(x-6)2+,
故當(dāng)x=6時,S取得最大值,
此時,y=12-6=6,即AE=AD.
因此,△ADE是等腰三角形.
點評:本題結(jié)合了三角形的相關(guān)知識考查了二次函數(shù)的應(yīng)用,根據(jù)題中的條件得出x,y的函數(shù)關(guān)系式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《四邊形》(08)(解析版) 題型:解答題

(2009•來賓)在?ABCD中,分別以AD、BC為邊向內(nèi)作等邊△ADE和等邊△BCF,連接BE、DF.求證:四邊形BEDF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《三角形》(12)(解析版) 題型:解答題

(2009•來賓)在?ABCD中,分別以AD、BC為邊向內(nèi)作等邊△ADE和等邊△BCF,連接BE、DF.求證:四邊形BEDF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•來賓)在△ABC中,AC=6,BC=8,AB=10,點D、E分別在AB、AC上,且DE將△ABC的周長分成相等的兩部分.設(shè)AE=x,AD=y,△ADE的面積為S.
(1)求出y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求出S關(guān)于x的函數(shù)關(guān)系式;試判斷S是否有最大值,若有,則求出其最大值,并指出此時△ADE的形狀;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣西來賓市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•來賓)在?ABCD中,分別以AD、BC為邊向內(nèi)作等邊△ADE和等邊△BCF,連接BE、DF.求證:四邊形BEDF是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案