【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點C作⊙O的切線BC,E是BC的中點,AB交⊙O于D點.

(1)直接寫出ED和EC的數(shù)量關系: ;
(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由;
(3)填空:當BC= 時,四邊形AOED是平行四邊形,同時以點O、D、E、C為頂點的四邊形是

【答案】
(1)ED=EC
(2)

DE是⊙O的切線.理由如下:

連接OD,如圖,

∵BC為切線,

∴OC⊥BC,∴∠OCB=90°,即∠2+∠4=90°,

∵OC=OD,ED=EC,

∴∠1=∠2,∠3=∠4,

∴∠1+∠3=∠2+∠4=90°,即∠ODE=90°,

∴OD⊥DE,∴DE 是⊙O 的切線;


(3)2;正方形
【解析】(1)連接CD,如圖,

∵AC是⊙O的直徑,∴∠ADC=90°,
∵E是BC的中點,∴ED=EC=BE.
3)當BC=2 時, ∵CA=CB=2,
∴CE=DE=1 , OC=OD=1,
又∵OC⊥CE,∴四邊形 ODEC為正方形.
∴AO=DE=1,且 AO∥DE,∴四邊形AOED是平行四邊形.
(1)根據(jù)直徑所對的圓周角是90度,可得CD⊥AB,由E是BC的中點,可得斜邊上的中線等于斜邊的一半;(2)根據(jù)等邊對等角,通過角的等量代換可得∠ODE=90°;(3)要使四邊形AOED是平行四邊形,則對邊相等且平行,即DE=OA=1,則BC=2DE=2,此時OC=OD=CE=DE=1,且OC⊥CE,則四邊形ODEC為正方形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解方程
(1)解方程: + =4.
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答題
(1)操作發(fā)現(xiàn):如圖,小明在矩形紙片ABCD的邊AD上取中點E,將△ABE沿BE折疊后得到△GBE,且點G在矩形ABCD內(nèi)部,將BG延長交DC于點F,認為GF=DF,你同意嗎?說明理由.
(2)問題解決:保持(1)中條件不變,若DC=2FC,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,對角線AC、BD相交于點O,設銳角∠AOB=α,將△DOC按逆時針方向旋轉(zhuǎn)得到△D′OC′(0°<旋轉(zhuǎn)角<90°)連接AC′、BD′,AC′與BD′相交于點M.
(1)當四邊形ABCD為矩形時,如圖1.求證:△AOC′≌△BOD′.

(2)當四邊形ABCD為平行四邊形時,設AC=kBD,如圖2.
①猜想此時△AOC′與△BOD′有何關系,證明你的猜想;
②探究AC′與BD′的數(shù)量關系以及∠AMB與α的大小關系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是為(0,3)、(-1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.

(1)若拋物線過點C、A、A′,求此拋物線的解析式;
(2)求平行四邊形ABOC和平行四邊形A′B′OC′重疊部分△OC′D的周長;
(3)點M是第一象限內(nèi)拋物線上的一動點,問:點M在何處時;△AMA′的面積最大?最大面積是多少?并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,AC與BD相交于點O,∠A=30°,∠COD=105°.則∠D的大小是(
A.30°
B.45°
C.65°
D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E、F分別是AD、BC的中點,AC與EF相交于點O.
(1)過點B作AC的平行線BG,延長EF交BG于H;
(2)在(1)的圖中,找出一個與△BHF全等的三角形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論: ①二次三項式ax2+bx+c的最大值為4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的兩根之和為﹣1;
④使y≤3成立的x的取值范圍是x≥0.
其中正確的個數(shù)有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明家的住房平面圖呈長方形,被分割成3個正方形和2個長方形后仍是中心對稱圖形.若只知道原住房平面圖長方形的周長,則分割后不用測量就能知道周長的圖形的標號為( )

A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

同步練習冊答案