【題目】當(dāng)三角形中一個(gè)內(nèi)角是另一個(gè)內(nèi)角2倍時(shí),則稱此三角形為“倍角三角形”,其中角稱為“倍角”.若“倍角三角形”中有一個(gè)內(nèi)角為36°,則這個(gè)“倍角三角形”的“倍角”的度數(shù)可以是________________.

【答案】72°、96°、36°.

【解析】

“倍角三角形”中有一個(gè)內(nèi)角為36°,則有三種情況:①另兩個(gè)角為72°、72°,72°為倍角;②另兩個(gè)角分別為48°、96°96°為倍角;③另兩個(gè)角分別為18°126°,36°為倍角,分別求解即可.

解:∵“倍角三角形”中有一個(gè)內(nèi)角為36°,

∴有三種情況:

①三角形的三個(gè)內(nèi)角為:36°、72°、72°,另兩個(gè)角為72°、72°,72°為倍角;

②三角形的三個(gè)內(nèi)角為:36°、48°、96°,另兩個(gè)角分別為48°、96°96°為倍角;

③三角形的三個(gè)內(nèi)角為:36°、18°、126°,另兩個(gè)角分別為18°、126°,36°為倍角,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用三角尺可按如圖所示的方法畫角平分線:已知∠AOB,把一個(gè)三角尺的一個(gè)頂點(diǎn)放在點(diǎn)O處,一條直角邊放在OB上,過直角頂點(diǎn)COB的垂線DC;再用同樣的方法作OA的垂線EF, EFDC交于點(diǎn)P.作射線OP,則OP即為∠AOB的平分線.這樣作圖的依據(jù)是構(gòu)造兩個(gè)三角形全等,由作法可知,EPOCPO的依據(jù)是( ).

A.SASB.HLC.ASAD.SSS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅弦圖,后人稱其為趙爽弦圖(如圖(1)所示).圖(2)由弦圖變化得到,它是由八個(gè)全等的直角三角形拼接而成的記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若EF4,則S1+S2+S3的值是( 。

A.32B.38C.48D.80

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,DE,BDCE交于點(diǎn)F,、的平分線交于點(diǎn)O,則的度數(shù)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四根長度分別為3,45,xx為正整數(shù))的木棒,從中任取三根,首尾順次相接都能組成一個(gè)三角形則組成的三角形的周長(

A.最小值是11B.最小值是12C.最大值是14D.最大值是15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過、兩點(diǎn).

求拋物線的解析式;

如圖,點(diǎn)是直線上方拋物線上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),請求出點(diǎn)的坐標(biāo)和面積的最大值?

的結(jié)論下,過點(diǎn)軸的平行線交直線于點(diǎn),連接,點(diǎn)是拋物線對稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn),使得以、、為頂點(diǎn)的四邊形是平行四邊形?如果存在,請直接寫出點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的坐標(biāo)為,過點(diǎn)軸的平行線交軸于點(diǎn),交雙曲線于點(diǎn),作交雙曲線于點(diǎn),連接、,已知

的值.

的面積.

試判斷是否相似,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)等腰直角△ABC△CDE中,∠ACB=∠DCE=90°.

(1)觀察猜想如圖1,點(diǎn)EBC上,線段AEBD的數(shù)量關(guān)系,位置關(guān)系

(2)探究證明把△CDE繞直角頂點(diǎn)C旋轉(zhuǎn)到圖2的位置,(1)中的結(jié)論還成立嗎?說明理由;

(3)拓展延伸:把△CDE繞點(diǎn)C在平面內(nèi)自由旋轉(zhuǎn),若AC=BC=13,DE=10,當(dāng)A、E、D三點(diǎn)在直線上時(shí),請直接寫出AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC 是邊長為 4 的等邊三角形,點(diǎn) D AB 上異 A,B 的一動(dòng)點(diǎn),將△ACD 繞點(diǎn) C 逆時(shí)針旋轉(zhuǎn) 60°△BCE, 則旋轉(zhuǎn)過程中△BDE 周長的最小值_________.

查看答案和解析>>

同步練習(xí)冊答案