解:(1)①∵四邊形ABCD是矩形, ∴AD∥BC, ∴∠CAD=∠ACB,∠AEF=∠CFE, ∵EF垂直平分AC,垂足為O, ∴OA=OC, ∴△AOE≌△COF, ∴OE=OF, ∴四邊形AFCE為平行四邊形, 又∵EF⊥AC, ∴四邊形AFCE為菱形, ②設(shè)菱形的邊長(zhǎng)AF=CF=xcm,則BF=(8﹣x)cm, 在Rt△ABF中,AB=4cm, 由勾股定理得42+(8﹣x)2=x2, 解得x=5, ∴AF=5cm; |
|
(2)①顯然當(dāng)P點(diǎn)在AF上時(shí),Q點(diǎn)在CD上,此時(shí)A、C、P、Q四點(diǎn)不可能構(gòu)成平行四邊形; 同理P點(diǎn)在AB上時(shí),Q點(diǎn)在DE或CE上,也不能構(gòu)成平行四邊形, 因此只有當(dāng)P點(diǎn)在BF上、Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形, ∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),PC=QA, ∵點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒, ∴PC=5t,QA=12﹣4t, ∴5t=12﹣4t, 解得, ∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),秒, |
|
②由題意得,以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),點(diǎn)P、Q在互相平行的對(duì)應(yīng)邊上, 分三種情況: (i)如圖1,當(dāng)P點(diǎn)在AF上、Q點(diǎn)在CE上時(shí),AP=CQ,即a=12﹣b,得a+b=12 |
|
(ii)如圖2,當(dāng)P點(diǎn)在BF上、Q點(diǎn)在DE上時(shí),AQ=CP,即12﹣b=a,得a+b=12 | |
(iii)如圖3,當(dāng)P點(diǎn)在AB上、Q點(diǎn)在CD上時(shí),AP=CQ,即12﹣a=b,得a+b=12, 綜上所述,a與b滿(mǎn)足的數(shù)量關(guān)系式是a+b=12(ab≠0)。 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
3 |
1 |
4 |
1 |
4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com