【題目】已知反比例函數(shù)y= ,下列結(jié)論中不正確的是( )
A.圖象必經(jīng)過(guò)點(diǎn)(1,﹣5)
B.y隨x的增大而增大
C.圖象在第二、四象限內(nèi)
D.若x>1,則﹣5<y<0

【答案】B
【解析】解:A、反比例函數(shù)y= ,所過(guò)的點(diǎn)的橫縱坐標(biāo)之積=﹣5,此結(jié)論正確,故此選項(xiàng)不符合題意;
B、反比例函數(shù)y= ,在每一象限內(nèi)y隨x的增大而增大,此結(jié)論不正確,故此選項(xiàng)符合題意;
C、反比例函數(shù)y= ,圖象在第二、四象限內(nèi),此結(jié)論正確,故此選項(xiàng)不合題意;
D、反比例函數(shù)y= ,當(dāng)x>1時(shí)圖象在第四象限,y隨x的增大而增大,故x>1時(shí)﹣5<y<0;
故選:B.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用反比例函數(shù)的圖象,掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形.有兩條對(duì)稱(chēng)軸:直線y=x和 y=-x.對(duì)稱(chēng)中心是:原點(diǎn)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,AF∥CE,且交BC于點(diǎn)F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠1=65°,求∠B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,P、Q分別是BC、AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別是R、S,若AQ=PQ,PR=PS,下面四個(gè)結(jié)論:①AS=AR②QP∥AR③△BRP≌△QSP;④AP垂直平分RS.其中正確結(jié)論的序號(hào)是 (請(qǐng)將所有正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AC=BC,∠ACB=120°,點(diǎn)DAB邊上運(yùn)動(dòng)(D不與A、B重合),連結(jié)CD.作∠CDE=30°DEAC于點(diǎn)E

1)當(dāng)DE∥BC時(shí),△ACD的形狀按角分類(lèi)是直角三角形;

2)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,△ECD的形狀可以是等腰三角形嗎?若可以,請(qǐng)求出∠AED的度數(shù);若不可以,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在雙曲線y= 上,點(diǎn)B在雙曲線y= (k≠0)上,AB∥x軸,過(guò)點(diǎn)A作AD⊥x軸于D.連接OB,與AD相交于點(diǎn)C,若AC=2CD,則k的值為( )

A.6
B.9
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二維碼已經(jīng)給我們的生活帶來(lái)了很大方便,它是由大小相同的黑白兩色的小正方形(如圖中C型黑白一樣)按某種規(guī)律組成的一個(gè)大正方形,F(xiàn)有25×25格式的正方形如圖,角上是三個(gè)7×7的A型大黑白相間正方形,中間右下有一個(gè)5×5的B型黑白相間正方形((A,B型均由C型黑白兩色小正方形組成),除這4個(gè)正方形外,其他的C型小正方形黑色塊數(shù)正好是白色塊數(shù)的3倍多53塊,則該25×25格式的二維碼中除去A、B型后,有__塊C型白色小正方形,整個(gè)二維碼中共有__塊C型白色小正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B、C、D都在⊙O上,過(guò)C點(diǎn)作CA∥BD交OD的延長(zhǎng)線于點(diǎn)A,連接BC,∠B=∠A=30°,BD=2

(1)求證:AC是⊙O的切線;
(2)求由線段AC、AD與弧CD所圍成的陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算與解方程
(1)計(jì)算: tan60°+|﹣3sin30°|﹣cos245°.
(2)解方程:x2+4x+1=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案