在平面直角坐標(biāo)中,Rt△OAB的兩頂點A,B分別在y軸,x軸的正半軸上,點O是原點.其中點A(0,3),B(4,0),OC是Rt△OAB的高,點P以每秒1個單位長的速度在線段OB上由點O向點B運(yùn)動(與端點不重合),過點P作PD⊥AP交AB于點D,設(shè)運(yùn)動時間為t秒.
(1)若△AOE的面積為,求點E的坐標(biāo);
(2)求證:△AOE∽△PBD;
(3)△PBD能否是等腰三角形?若能,求出此時t的值;若不能,請說明理由;
(4)當(dāng)t=3時,直接寫出此時的值.

【答案】分析:(1)過點E作EF⊥OA于F,則EF是△OAE的高,易知OA的長,根據(jù)△OAE的面積即可求得EF的值,易證得△OEF∽△BAO,根據(jù)相似三角形所得比例線段即可求得OE的長,也就能得到E點的坐標(biāo).
(2)由于AP⊥PD,那么∠DPB和∠EAO同為∠APO的余角,則∠EAO=∠DPB,易證得∠AOE=∠PBD,由此可證得所求的三角形相似.
(3)由于△APD中,∠APD=90°,故∠ADP是銳角,∠BDP是鈍角,若△BPD是等腰三角形,那么∠BDP必為頂角,即DP=BD;由于△AOE∽△PBD,那么△AOE也是等腰三角形,即OE=AE,根據(jù)等腰三角形三線合一的性質(zhì)知:AF=FO=,仿照(1)的方法,可通過△OEF∽△BAO,求得EF的長,而△AEF∽△APO,根據(jù)相似三角形所得比例線段即可求得OP的長即t的值.
(4)當(dāng)t=3時,OP=OA=3,則AP=3;由(2)證得△AOE∽△PBD,那么AE:PD=OA:PB,由于OA=3,PB=OB-OP=1,因此AE=3PD,可設(shè)PD=x,則AE=3x,易得△AEC∽△ADP,則有:,根據(jù)射影定理可在Rt△ABO中求出AC的長,利用勾股定理可求得EC的表達(dá)式,將它們代入上式比例式中,即可求得x的值,進(jìn)而可得到EC、AE的長,有了AE、AP的長,即可得到AE:EP的值.
解答:(1)解:過點E作EF⊥OA于點F,
∵△AOE的面積為,OA=3,
∴EF=1;
∵∠EOF=∠ABO=90°-∠BOC,
∠EFO=∠AOB=90°,
∴△OEF∽△BAO,
,即,所以O(shè)F=
∴點E的坐標(biāo)為(1,).

(2)證明:∵Rt△OAB中,OC為斜邊AB邊上的高,
∴∠EOA+∠OAC=90°,∠DBP+∠OAC=90°,
∴∠EOA=∠DBP,
∴∠EOA=∠DBP=90°-∠BOC,
∠AEO=∠PDB=90°+∠PAB,
∴△AOE∽△PBD.

(3)△PBD可以是等腰三角形,
∵∠PDB=90°+∠PAB>90°,
∴如果△PBD是等腰三角形,∠PDB只能頂角,即DP=DB,
當(dāng)△PDB是等腰三角形,∵△AOE∽△PBD,
∴△AOE是等腰三角形,且EA=EO;
過點E作EF⊥AO于點F,則AF=OF=;
∵△OEF∽△BAO,
,即,所以EF=
∵△AFE∽△AOP,
,即,所以t=,
∴當(dāng)△PBD是等腰三角形時,t=;

(4)當(dāng)t=3時,
點評:此題主要考查的是相似三角形的性質(zhì)以及等腰三角形的判定;在解答過程中,反復(fù)多次用到了相似三角形的性質(zhì),能夠?qū)⑺缶段和已知線段用相似三角形串聯(lián)起來是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖所示,在平面直角坐標(biāo)中,拋物線的頂點P到軸的距離是4,拋物線與x軸相交于O、M兩點,OM=4;矩形ABCD的邊BC在線段的OM上,點A、D在拋物線上.
(1)請寫出P、M兩點坐標(biāo),并求出這條拋物線的解析式;
(2)設(shè)矩形ABCD的周長為l,求l的最大值;
(3)連接OP、PM,則△PMO為等腰三角形,請判斷在拋物線上是否存在點Q(除點M外),使得△OPQ也是等腰三角形,簡要說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)中,點O1(-4,0),半徑為8的⊙O1與x軸交于A、B,過A作直線l與x軸負(fù)方向成60°角,且交y軸于點C,以點O2(13,5)為圓心的圓與x軸切于點D.
(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位長的速度沿x軸向左平移,當(dāng)⊙O2第一次與⊙O1外切時,求平移的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)中,△ABC的三個頂點的坐標(biāo)分別是A(-2,3),B(-4,-1),C(2,0),將△ABC平移至△A1B1C1的位置,點A,B,C的對應(yīng)點分別是A1,B1,C1,若點A1的坐標(biāo)為(3,1),則點C1的坐標(biāo)為
(7,-2)
(7,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,點A(2,2),試在x軸上找點P,使△AOP是等腰三角形,那么這樣的三角形有( 。

查看答案和解析>>

同步練習(xí)冊答案