如圖,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以2cm/s的速度向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),沿AC方向以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn),則另一個(gè)動(dòng)點(diǎn)也停止運(yùn)動(dòng),則三角形APQ的最大面積是   
【答案】分析:設(shè)經(jīng)過t時(shí)間s運(yùn)動(dòng)停止,列出面積與t之間的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的最值求解.
解答:解:根據(jù)題意
沿AB方向以2cm/s的速度向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),沿AC方向以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),
∴AP=2t,AQ=t,
S△APQ=t2
∵0<t≤4,
∴三角形APQ的最大面積是16cm2
故答案為:16cm2
點(diǎn)評(píng):本題主要考查二次函數(shù)的應(yīng)用,借助二次函數(shù)解決實(shí)際問題,難度較大,關(guān)鍵列出面積與t之間的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的最值求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,△ABC是直角三角形,BC是斜邊,將△ABP繞A逆時(shí)針旋轉(zhuǎn)后,能夠與△ACP′重合,如果AP=3,那么PP′2的長(zhǎng)等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面短文:
如圖①,△ABC是直角三角形,∠C=90°,現(xiàn)將△ABC補(bǔ)成矩形,使△ABC的兩個(gè)頂點(diǎn)為矩形一邊的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對(duì)邊上,那么符合要求的矩形可以畫出兩個(gè)矩形ACBD和矩形AEFB(如圖②)精英家教網(wǎng)精英家教網(wǎng)
解答問題:
(1)設(shè)圖②中矩形ACBD和矩形AEFB的面積分別為S1、S2,則S1
 
S2(填“>”“=”或“<”).
(2)如圖③,△ABC是鈍角三角形,按短文中的要求把它補(bǔ)成矩形,那么符合要求的矩形可以畫
 
個(gè),利用圖③把它畫出來.
(3)如圖④,△ABC是銳角三角形且三邊滿足BC>AC>AB,按短文中的要求把它補(bǔ)成矩形,那么符合要求的矩形可以畫出
 
個(gè),利用圖④把它畫出來.
(4)在(3)中所畫出的矩形中,哪一個(gè)的周長(zhǎng)最。繛槭裁?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是直角三角形,∠ACB=90°.
(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法)精英家教網(wǎng)
①作△ABC的外接圓,圓心為O;
②以線段AC為一邊,在AC的右側(cè)作等邊△ACD;
③連接BD,交⊙O于點(diǎn)E,連接AE,
(2)綜合與運(yùn)用:在你所作的圖中,若AB=4,BC=2,則:
①AD與⊙O的位置關(guān)系是
 

②線段AE的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是直角邊長(zhǎng)為4的等腰直角三角形,直角邊AB是半圓O1的直徑,半圓O2過C點(diǎn)且與半圓O1相切,則圖中陰影部分的面積是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是直角三角形,∠BAC=90°,AD、AE分別是△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm.
(1)求AD的長(zhǎng);
(2)求△AEC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案