如圖,拋物線C1:y=x2+2x-3的頂點(diǎn)為M,與x軸相交于A、B兩點(diǎn),與y軸交于點(diǎn)D;拋物線C2與拋物線C1關(guān)于y軸對(duì)稱,頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn).
(1)拋物線C2的函數(shù)關(guān)系式是______;
(2)點(diǎn)A、D、N是否在同一條直線上?說(shuō)明你的理由;
(3)點(diǎn)P是C1上的動(dòng)點(diǎn),點(diǎn)P′是C2上的動(dòng)點(diǎn),若以O(shè)D為一邊、PP′為其對(duì)邊的四邊形ODP′P(或ODPP′)是平行四邊形,試求所有滿足條件的點(diǎn)P的坐標(biāo);
(4)在C1上是否存在點(diǎn)Q,使△AFQ是以AF為斜邊且有一個(gè)角為30°的直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)拋物線C1、C2關(guān)于y軸對(duì)稱,那么它們的開(kāi)口方向、開(kāi)口大小都相同(即二次項(xiàng)系數(shù)相同),頂點(diǎn)關(guān)于y軸對(duì)稱(即M、N關(guān)于y軸對(duì)稱);首先將拋物線C1寫(xiě)成頂點(diǎn)式,再根據(jù)上述條件得出拋物線C2的解析式.
(2)點(diǎn)A、D的坐標(biāo)可由拋物線C1的解析式得出,利用待定系數(shù)法能求得直線AD的解析式,然后將點(diǎn)N的坐標(biāo)代入直線AD的解析式中進(jìn)行驗(yàn)證即可.
(3)已經(jīng)給出了OD為平行四邊形的邊,那么OD、PP′必平行且相等,因此PP′必平行于y軸(即橫坐標(biāo)相同),且PP′=OD=3(即P、P′縱坐標(biāo)的絕對(duì)值為3),據(jù)此確定點(diǎn)P的坐標(biāo).
(4)通過(guò)觀察圖形不難判斷出:
①當(dāng)點(diǎn)Q在x軸下方時(shí),∠AFQ=30°,那么首先通過(guò)解直角三角形求出點(diǎn)Q的坐標(biāo),再代入拋物線C1的解析式中進(jìn)行驗(yàn)證即可;
②當(dāng)點(diǎn)Q在x軸上方時(shí),∠FAQ=30°,解法同①.
解答:解:(1)∵拋物線C1、C2關(guān)于y軸對(duì)稱,且C1:y=x2+2x-3=(x+1)2-4,
∴M(-1,-3)、N(1,-3),C2:y=(x-1)2-4=x2-2x-3.

(2)三點(diǎn)在同一直線上,理由:
由C1:y=x2+2x-3,得:A(-3,0)、D(0,-3);
設(shè)直線AD的解析式:y=kx+b,則有:
,
解得
故直線AD:y=-x-3;
當(dāng)x=1時(shí),y=-1-3=-4,即點(diǎn)N在直線AD上;
所以,A、D、N三點(diǎn)共線.

(3)∵四邊形ODP′P(或ODPP′)是平行四邊形,且OD、PP′為邊,
∴ODPP′;
設(shè)P(x,x2+2x-3),則P′(x,x2-2x-3),由PP′=OD=3,得:
|(x2+2x-3)-(x2-2x-3)|=3,
解得:x=±
故點(diǎn)P的坐標(biāo)為(,-)或(-,-).

(4)滿足條件的點(diǎn)Q不存在,理由如下:
①當(dāng)點(diǎn)Q在x軸下方時(shí),∠AFQ=30°,如右圖;
在Rt△AFQ中,AF=6,∠AFQ=30°,QG⊥AF,有:
AQ=AF=3,AG===,QG=AG•tan60°=;
則Q(-,-);
將Q(-,-)代入拋物線C1:y=x2+2x-3中,等式不成立;
②當(dāng)點(diǎn)Q在x軸上方時(shí),∠FAQ=30°;
同①可求得,Q(),代入拋物線C1:y=x2+2x-3中,等式不成立;
綜上,不存在符合條件的點(diǎn)Q使得△AFQ是以AF為斜邊且有一個(gè)角為30°的直角三角形.
點(diǎn)評(píng):此題主要考查了二次函數(shù)解析式的確定、軸對(duì)稱圖形的性質(zhì)、平行四邊形與直角三角形的性質(zhì)等綜合知識(shí);難度較大的是后面兩題,(3)題中,OD為平行四邊形的邊是解題的一個(gè)關(guān)鍵條件,而平行四邊形的對(duì)邊平行且相等是解題的主要理論依據(jù);最后一題中,點(diǎn)Q的位置共有兩種情況,這是容易漏解的地方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,拋物線C1:y=x2-4x的對(duì)稱軸為直線x=a,將拋物線C1向上平移5個(gè)單位長(zhǎng)度得到拋物線C2,則圖中的兩條拋物線、直線x=a與y軸所圍成的圖形(圖中陰影部分)的面積為
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對(duì)稱;拋物線C1,C3關(guān)于y軸對(duì)稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點(diǎn);與y相交于E、F兩點(diǎn);H、G、M分別為拋物線C1,C2,C3的頂點(diǎn).HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個(gè)點(diǎn)中,四個(gè)點(diǎn)可以連接成一個(gè)四邊形,請(qǐng)你用字母寫(xiě)出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫(xiě)一個(gè),寫(xiě)錯(cuò)、多寫(xiě)記0分)
(2)證明其中任意一個(gè)特殊四邊形;
(3)寫(xiě)出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線c1:y=ax2-2ax-c與x軸交于A、B,且AB=6,與y軸交于C(0,-4 ).
(1)求拋物線c1的解析式;
(2)問(wèn)拋物線c1上是否存在P、Q(點(diǎn)P在點(diǎn)Q的上方)兩點(diǎn),使得以A、C、P、Q為頂點(diǎn)的四邊形為直角梯形,若存在,求P、Q兩點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)拋物線c2與拋物線c1關(guān)于x軸對(duì)稱,直線x=m分別交c1、c2于D、E兩點(diǎn),直線x=n分別交c1、c2于M、N兩點(diǎn),若四邊形DMNE為平行四邊形,試判斷m和n間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線C1:y=ax2+bx+1的頂點(diǎn)坐標(biāo)為D(1,0),
(1)求拋物線C1的解析式;
(2)如圖1,將拋物線C1向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線C2,直線y=x+c,經(jīng)過(guò)點(diǎn)D交y軸于點(diǎn)A,交拋物線C2于點(diǎn)B,拋物線C2的頂點(diǎn)為P,求△DBP的面積
(3)如圖2,連接AP,過(guò)點(diǎn)B作BC⊥AP于C,設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連接PQ并延長(zhǎng)交BC于點(diǎn)E,連接BQ并延長(zhǎng)交AC于點(diǎn)F,試證明:FC(AC+EC)為定值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線C1:y=ax2+bx-1與x軸交于兩點(diǎn)A(-1,0),B(1,0),與y軸交于點(diǎn)C.

(1)求拋物線C1的解析式;
(2)若點(diǎn)D為拋物線C1上任意一點(diǎn),且四邊形ACBD為直角梯形,求點(diǎn)D的坐標(biāo);
(3)若將拋物線C1先向上平移1個(gè)單位,再向右平移2個(gè)單位得到拋物線C2,直線l1是第一、三象限的角平分線所在的直線.若點(diǎn)P是拋物線C2對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),直線l2:x=t平行于y軸,且分別與拋物線C2和直線l1交于點(diǎn)D、E兩點(diǎn).是否存在直線l2,使得△DEP是以DE為直角邊的等腰直角三角形?若存在求出t的值;若不存在說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案