3、三角形外接圓的圓心就是三角形三條邊的垂直平分線的交點,叫做三角形的
心.
分析:三角形的外接圓的圓心叫三角形的外心,即為三角形三邊的垂直平分線的交點.
解答:解:根據(jù)概念,知三角形外接圓的圓心就是三角形三條邊的垂直平分線的交點,
到三個頂點的距離相等,所以是三角形的外心,
故答案為外心.
點評:考查了三角形的外心的概念.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

定理:圖1,如果∠ADB=∠ACB,那么四邊形ABCD有外接圓,也叫做A,B,C,D四點共圓.(注:本定理不需要證明)
(1)圖2,△ABC中,AC=BC,點E,F(xiàn)分別在線段AC,BC上運動(不與端點重合),而且CE=BF,O是△ABC的外心(外接圓的圓心,它到三角形三個頂點距離相等),試證明C,E,O,F(xiàn)四點共圓.(注:可以使用上述定理,也可以采用其他方法)
精英家教網(wǎng)
如果將問題2中的點C“分離”成兩個點,那么就有:
(2)圖3,在凸四邊形ABCD中,AD=BC,點E,F(xiàn)分別在線段AD,BC上運動(不與端點重合),而且DE=BF,直線AC,BD相交于點P,直線EF,BD相交于點Q,直線EF,AC相交于點R.當點E,F(xiàn)分別在線段AD,BC上運動(不與端點重合)時,探究△PQR的外接圓是否經(jīng)過除點P外的另一個定點?如果是,請給出證明,并指出是哪個定點;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

定理:圖1,如果∠ADB=∠ACB,那么四邊形ABCD有外接圓,也叫做A,B,C,D四點共圓.(注:本定理不需要證明)
(1)圖2,△ABC中,AC=BC,點E,F(xiàn)分別在線段AC,BC上運動(不與端點重合),而且CE=BF,O是△ABC的外心(外接圓的圓心,它到三角形三個頂點距離相等),試證明C,E,O,F(xiàn)四點共圓.(注:可以使用上述定理,也可以采用其他方法)

如果將問題2中的點C“分離”成兩個點,那么就有:
(2)圖3,在凸四邊形ABCD中,AD=BC,點E,F(xiàn)分別在線段AD,BC上運動(不與端點重合),而且DE=BF,直線AC,BD相交于點P,直線EF,BD相交于點Q,直線EF,AC相交于點R.當點E,F(xiàn)分別在線段AD,BC上運動(不與端點重合)時,探究△PQR的外接圓是否經(jīng)過除點P外的另一個定點?如果是,請給出證明,并指出是哪個定點;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

定理:圖1,如果∠ADB=∠ACB,那么四邊形ABCD有外接圓,也叫做A,B,C,D四點共圓.(注:本定理不需要證明)
(1)圖2,△ABC中,AC=BC,點E,F(xiàn)分別在線段AC,BC上運動(不與端點重合),而且CE=BF,O是△ABC的外心(外接圓的圓心,它到三角形三個頂點距離相等),試證明C,E,O,F(xiàn)四點共圓.(注:可以使用上述定理,也可以采用其他方法)

精英家教網(wǎng)

如果將問題2中的點C“分離”成兩個點,那么就有:
(2)圖3,在凸四邊形ABCD中,AD=BC,點E,F(xiàn)分別在線段AD,BC上運動(不與端點重合),而且DE=BF,直線AC,BD相交于點P,直線EF,BD相交于點Q,直線EF,AC相交于點R.當點E,F(xiàn)分別在線段AD,BC上運動(不與端點重合)時,探究△PQR的外接圓是否經(jīng)過除點P外的另一個定點?如果是,請給出證明,并指出是哪個定點;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年第4屆“銳豐杯”初中數(shù)學邀請賽試卷(解析版) 題型:解答題

定理:圖1,如果∠ADB=∠ACB,那么四邊形ABCD有外接圓,也叫做A,B,C,D四點共圓.(注:本定理不需要證明)
(1)圖2,△ABC中,AC=BC,點E,F(xiàn)分別在線段AC,BC上運動(不與端點重合),而且CE=BF,O是△ABC的外心(外接圓的圓心,它到三角形三個頂點距離相等),試證明C,E,O,F(xiàn)四點共圓.(注:可以使用上述定理,也可以采用其他方法)

如果將問題2中的點C“分離”成兩個點,那么就有:
(2)圖3,在凸四邊形ABCD中,AD=BC,點E,F(xiàn)分別在線段AD,BC上運動(不與端點重合),而且DE=BF,直線AC,BD相交于點P,直線EF,BD相交于點Q,直線EF,AC相交于點R.當點E,F(xiàn)分別在線段AD,BC上運動(不與端點重合)時,探究△PQR的外接圓是否經(jīng)過除點P外的另一個定點?如果是,請給出證明,并指出是哪個定點;如果不是,請說明理由.

查看答案和解析>>

同步練習冊答案