如圖1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF繞著邊AB的中點D旋轉,DE,DF分別交線段AC于點M,K.
1.(1)觀察:①如圖2、圖3,當∠CDF=0°或60°時,AM+CK______MK(填“>”,“<”或“=”);
②如圖4,當∠CDF=30°時,AM+CK______MK(只填“>”或“<”);
2.(2)猜想:如圖1,當0°<∠CDF<60°時,AM+CK______MK(填“>”,“<”或“=”),并說明理由;
3.(3)如果MK2+CK2=AM2,請直接寫出∠CDF的度數(shù)和的值.
1.(1)① = ………………………………………………………………………2分
② > ………………
2.(2)
>………………………………………………………………………………………2分
理由:作點C關于FD的對稱點G,
連接GK,GM,GD,
則CD=GD ,GK = CK,∠GDK=∠CDK,
∵D是AB的中點,∴AD=CD=GD.
∵30°,∴∠CDA=120°,
∵∠EDF=60°,∴∠GDM+∠GDK=60°,
∠ADM+∠CDK =60°.
∴∠ADM=∠GDM,………………………………………………………………………3分
∵DM=DM,
∴△ADM≌△GDM,∴GM=AM.
∵GM+GK>MK,∴AM+CK>MK.………………
3.由(2),得GM=AM,GK=CK,
∵MK2+CK2=AM2,∴MK2+GK2=GM2,∴∠GKM=90°,
又∵點C關于FD的對稱點G,∴∠CKG=90°,∠FKC=∠CKG=45°,
又有(1),得∠A=∠ACD=30°,∴∠FKC=∠CDF+∠ACD,∴∠CDF=∠FKC-∠ACD=15°,
在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°,∴∠GMK=30°,
∴ =∴=
解析:略
科目:初中數(shù)學 來源: 題型:
| ||
2 |
AC |
CM |
BC |
CA |
CM |
AB |
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
2
| ||
π |
2
| ||
π |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com